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Introduction

Généralités

Ce fascicule fournit aux étudiants les listes d’exercices a résoudre lors des répétitions du cours de
MATHEMATIQUE Math1009 de I’année académique 2025-2026. Il présente aussi la résolution complete
d’exercices de base (listes 2002/2003) et les solutions des exercices des listes 2003/2004 et 2004/2005
couvrant la matiere de ce cours s’adressant aux futurs bacheliers de premier bloc en chimie ainsi qu’aux
futurs bacheliers de deuxieme bloc en géologie.

Ce fascicule a été rédigé pour répondre a divers objectifs. Il veut fournir aux étudiants une référence
correcte sur laquelle s’appuyer pour tenter de résoudre les exercices proposés au cours des répétitions.

La rédaction de ce fascicule a également pour but d’insister sur le vocabulaire spécifique, les symboles
mathématiques & utiliser, la rigueur exigée dans la rédaction, les liens indispensables qui doivent figurer
entre les différentes étapes d’un développement mathématique. Trop souvent, en corrigeant des interro-
gations par exemple, on peut lire une succession de notations, d’équations, de calculs écrits les uns a co6té
des autres sans la moindre indication relative a la logique du raisonnement. C’est cet écueil aussi qu’on
voudrait éviter aux étudiants grace a ce fascicule.

Une derniére intention, et non la moindre, est d’amener, au plus vite, les étudiants & prendre en charge
leur formation de la fagon la plus active et la plus autonome possible.

Pour terminer, je m’en voudrais de ne pas exprimer mes plus vifs remerciements a Francoise Bastin
pour l'accueil qu’elle a réservé a cette initiative, les conseils qu’elle m’a donnés, sa relecture attentive
et la confiance qu’elle me témoigne dans mon travail avec les étudiants. Je remercie également tous les
assistants avec lesquels je travaille, tout spécialement Christine Amory et Christophe Dozot, pour leurs
suggestions constructives et leur participation a 1’élaboration de ce fascicule.

Jacqueline Crasborn
Année académique 2025 - 2026

Informations relatives aux répétitions

Compétences a entrainer

Lors des répétitions, avec ’aide des assistants, il est attendu que les étudiants s’entrainent aux compétences
suivantes :
1) la communication (orale et écrite)
— structurée (contexte, justifications, conclusion ... ),
— précise (vocabulaire et symboles adéquats, reflet exact de la pensée ...);

2) le sens critique (’exercice a-t-il un sens? le résultat est-il plausible? ...);

3) le raisonnement logique et la compréhension (et non I’application d’une technique de calcul
sans réflexion, par imitation ...);



4) Vautonomie
— dans la recherche de pistes ou d’idées par 'utilisation, dans un premier temps, de documents
(syllabus du cours, fascicules intitulés “‘Bases” et “Exercices de base” ...) et, éventuellement
dans un second temps, par une demande d’aide aupres de personnes-ressources pour répondre
aux questions ou difficultés rencontrées,
— dans 'organisation et la planification de son travail ;

5) la maitrise des connaissances de base des mathématiques comme outil pour les sciences.

Consignes pour préparer une répétition

1. Répondre soigneusement aux questions de théorie de la premiere partie de chaque liste.

2. 1l est vivement conseillé
— de prendre connaissance des exercices a résoudre lors de la répétition future afin de détecter
les difficultés qui pourraient étre rencontrées lors de la résolution,
— de dresser alors une liste de questions sur les difficultés rencontrées, questions a poser a 'as-
sistant lors de la répétition

Déroulement des répétitions

1. Dans le cas de notions habituellement non vues dans ’enseignement secondaire ou qui semblent
souvent poser probleme aux étudiants, ’assistant résout 1 ou 2 exercices “modele” pour leur
permettre de se familiariser avec les exercices ayant trait a ces matieres; il fait participer les
étudiants a leur résolution. Ensuite, I'assistant fera une syntheése du processus de résolution en
mentionnant les éléments de théorie utilisés.

2. Enfin, chaque étudiant résout, seul ou avec son voisin, les exercices proposés dans la liste en
cherchant les informations nécessaires dans ses documents. S’il reste bloqué malgré tout, il appelle
alors D’assistant qui ’aidera dans sa recherche.

Tous les exercices de la liste doivent étre résolus au plus tard pour la répétition suivante; la plupart
des étudiants seront obligés d’achever & domicile. Dans ce cas, s’ils rencontrent certaines difficultés, ils
peuvent toujours en parler lors d’une séance de remédiation ou envoyer un courriel a I'un des assistants.

Les solutions des exercices proposés pour les répétitions se trouvent en fin de ce fascicule.
Table des matieres des répétitions pour 2025-2026

Rappels et calcul matriciel (1).

Calcul matriciel (2).

Calcul matriciel (3).

Fonctions de plusieurs variables (1).
Fonctions de plusieurs variables(2).
Révisions en vue de I'interrogation (1).
Révisions en vue de I'interrogation (2).

Fonctions de plusieurs variables (3).
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Correction de I'interrogation.
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e

Fonctions de plusieurs variables (4).

—_
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. Fonctions de plusieurs variables (5).

—_
[\

. Approximations polynomiales.

—
w

. Développement en séries de puissances.



14. Mathématiques appliquées.

15. Révisions en vue de ’examen.

Il est possible que ce planning soit légérement modifié en fonction de ’avancement du
cours théorique. Toute modification sera mentionnée sur la page web du cours dont
Padresse suit

http ://www.afo.ulg.ac.be/fb/ens.html

Il est donc indispensable de la consulter régulierement.

L’équipe des assistants
Année académique 2025 - 2026



AVERTISSEMENT

Les listes d’exercices résolus présentées dans ce fascicule sont celles des années académiques
2002/2003, 2003/2004 et 2004/2005. Elles ont été modifiées en fonction de la nouvelle ver-
sion du cours de Mathématique de F. Bastin. Les listes des années suivantes se trouvent
sur la page web relative au cours.

Les exercices des répétitions du cours Mathématique Math1009 pour ’année académique
2025-2026 se trouvent au chapitre 1. Ceux des années 2002/2003, 2003/2004 et 2004 /2005
se trouvent dans les chapitres 2 a 4 inclus. Les solutions des exercices des répétitions se
trouvent au chapitre 5.

Jacqueline Crasborn
Année académique 2025 - 2026



Chapitre 1
Listes d’exercices

LISTE 1 : RAPPELS ET CALCUL MATRICIEL

‘A préparer AVANT de venir a la répétition

’I. Nombres complexes et résolution d’équations‘

Bien connaitre la matiere de Math2007 : & réviser si nécessaire.

’II. Matrices et opérations ‘

1. Qu’appelle-t-on une matrice ?
2. Qu’appelle-t-on le type (ou le format) et la dimension d’une matrice ?
3. Etant donné une matrice A, définir
(a) sa matrice conjuguée,
(b) sa matrice transposée,
(¢) sa matrice adjointe.
4. Définir les opérations suivantes et en donner les propriétés :
(a) addition de deux matrices du méme type,
(b) multiplication d’une matrice par un nombre complexe,

(¢) multiplication de deux matrices.

A résoudre PENDANT la répétition
(et & achever a domicile si nécessaire)

Lors de la répétition, les exercices 1. 2(2-3), II. 1(2-7) et 4(a) seront résolus par ’assistant.

I. Nombres complexes et résolution d’équations‘

1. Déterminer les partie réelle, imaginaire, le conjugué et le module de chacun des complexes ci-

dessous. 5
)+ 2

zo = cos(2) + isin(2), 23 = (Z2+ ) .
—1

141
i—1’

Z1 =



2 CHAPITRE 1. LISTES D’EXERCICES 2025-2026 MATH1009

2. Résoudre les équations suivantes

(1) 2249=0 (2)2°=1 @B 22+z+1=0.

II. Opérations entre matrices ‘

1. Soient les matrices A, B, C' données par

2 i 2 0 .
A= 1+i -1 |, B=|1 4 |, C:(?;. 1/(?/“;1))
3/i (2—1i)? i =2 vt

Si possible, effectuer les opérations suivantes (et simplifier la réponse au maximum). Si cela ne
I’est pas, en expliquer la raison.

1) A+ B, 2) A+ B, 3) A.B, 4) AB+C, 5) B.A, 6) C.A, 7) A*.C, 8)i.C, 9) (i.A)".

. Calculer

o = O
S O O

1
2. Soit A une matrice carrée de dimension 3 telle que A;; =1, Vi,jet B=| 0
0

C = AB — BA et en déduire la forme de C + C.

2 -1

3. On donne la matrice A = < 3 0

>. Montrer que A2 —2A44+31=0.

4. Déterminer la forme générale des matrices qui commutent avec

a)A<g é) b)B(g 2>(a,b€C)



LISTE 2 : CALCUL MATRICIEL (2)

A préparer AVANT de venir a la répétition

’I. Déterminant et matrice inverse ‘

1. Qu’appelle-t-on le déterminant d’une matrice ? Peut-on toujours le définir ?

A

donnée existe.

Citer les propriétés liées aux déterminants.
Qu’appelle-t-on matrice inverse d’une matrice carrée donnée 7

Quelle est la forme de cette matrice ?

Donner une condition nécessaire et suffisante pour que la matrice inverse d’une matrice carrée

A résoudre PENDANT la répétition
(et a achever a domicile si nécessaire)

Lors de la répétition, les exercices I. 1(A - C - E) et 2(B - C) ainsi que II. (C - D) seront

résolus par 1’assistant.

I. Déterminants

1. Calculer le plus rapidement possible le déterminant de chacune des matrices suivantes.

) e

1 3
D:% 3 =3
-3 1

-3 1 6
c=[ 6 2 3 |,
3 1 -6
cos?(a)
cos?(b) | (a,b,c €R).
cos?(c)

2. Le déterminant de chacune des matrices suivantes est un polynéme en x € C. Factoriser ce po-

lynéme en un produit de facteurs du premier degré.

S

)

Il
oo o8 O
== =88
R =8 O
R & P, PPk O

8 = = = O
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II. Inversion de matrices ‘

Calculer (si elle existe) la matrice inverse de chacune des matrices suivantes (on donne « € R).

A= (%) me () e (e )



LISTE 3 : CALCUL MATRICIEL (3)

A préparer AVANT de venir a la répétition

‘I. Diagonalisation et matrices stochastiques ‘

1.

NS o w

Etant donné une matrice carrée A,

(a) qu’appelle-t-on valeur propre de A ?
(b) qu’appelle-t-on vecteur propre de A ?

En pratique, comment détermine-t-on les valeurs propres et les vecteurs propres d’'une matrice
carrée.

Qu’appelle-t-on matrice diagonale ?

Qu’appelle-t-on matrice diagonalisable 7

Donner une condition nécessaire et suffisante pour qu’une matrice soit diagonalisable.
Qu’appelle-t-on matrice stochastique 7

Qu’appelle-t-on vecteur de probabilité ?

A résoudre PENDANT la répétition
(et & achever a domicile si nécessaire)

Lors de la répétition, les exercices I. 2(C) et II. 1 seront résolus par 1’assistant.

I. Diagonalisation ‘

1.

2.

Déterminer les valeurs propres des matrices suivantes et en donner la multiplicité.

o 2 1 10 1 3 0
A:<Z. .’), B=|03 5|, c=|3 -2 -1
vt 00 2 0 -1 1

Rechercher les valeurs propres et les vecteurs propres des matrices suivantes. Ces matrices sont-
elles diagonalisables ? Pourquoi 7 Si elles le sont, en déterminer une forme diagonale A, ainsi qu’'une
matrice inversible S qui y conduit.

5 3 -1 0 0 -1 0 0 1 3 0
A:<4 1), B=| 1 1 0o |, c=l 1 1 0 |, D=3 —2 -1
-2 0 -1 0 0 -1 0 -1 1

Calculer les produits AS et SA. Comparer les matrices obtenues. N’aurait-on pas pu prévoir ce
resultat sans effectuer les calculs ? Pourquoi ?

Une matrice carrée A de dimension 2 possede les deux valeurs propres 1 et -1, auxquelles peuvent

1 ) Que vaut A?

A . . 2
étre associés respectivement les vecteurs propres ( 9 ) et ( 1
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1. L’institut météorologique a fait les observations suivantes :
— on n’a jamais vu deux jours ensoleillés consécutifs,
— ¢'il fait beau un jour donné, on a une chance égale d’avoir de la pluie ou de la neige le lendemain,
— ¢'il pleut ou s’il neige, on a une chance sur deux que le temps se maintienne le jour suivant et
une chance sur quatre qu’il fasse beau le lendemain.
Sachant cela,
(a) Représenter la matrice de transition de ce systéme.

(b) Sachant qu’il fait beau aujourd’hui, quel pourcentage de chance a-t-on qu’il fasse beau dans
deux jours?

(¢) A long terme, quelle sera I’évolution du climat ?

2. Dans un laboratoire, a chaque repas, des lapins ont le choix entre manger des carottes, de la salade
ou des pissenlits mais ne peuvent manger quun aliment d’une seule catégorie lors d’un méme
repas. Comme ils sont gourmands, ils ne manquent jamais un repas.

L’observation montre que si un lapin a mangé des carottes a un repas, il en mangera au repas

suivant dans 70 % des cas ; sinon, il mangera de la salade une fois sur 5 ou des pissenlits 1 fois sur

10.

S’il a mangé de la salade, il en mangera encore 6 fois sur 10 au repas suivant ; sinon, il mangera

un des deux autres aliments de fagon équiprobable.

Enfin, s’il a mangé des pissenlits, au repas suivant il y a 1 chance sur 5 qu’il mange des carottes

et 2 chances sur 5 de la salade.

(a) Siun lapin vient de manger des carottes, quelle est la probabilité qu’il mange de la salade dans
deux repas?

(b) A longue échéance, que mange ce lapin ?

3. En algebre linéaire (ou géométrie analytique), une rotation du plan (d’angle 6) est représentée par

une matrice du type
cos(f) —sin(6)
My = .

0 ( sin(d)  cos(f)
ou  est un réel (et représente la mesure de ’angle de la rotation).
— Pour tout 0, déterminer la matrice produit M§ et en simplifier les éléments au maximum.
— Montrer que quels que soient 6,6, les matrices My et My commutent. Qu’est-ce que cela

signifie en termes de rotations ?

— Montrer que quel que soit le réel 6, la matrice

(S5 =)

est aussi une matrice qui représente une rotation.

4. Vrai ou faux (Justifier)

100
(a) Toute matrice carrée de dimension 3 commute avec | 0 1 0
0 00

. a—b a*—ab+b?
(b) La matrice < a2 b2 LR

(¢) Si une matrice carrée A de dimension 2 est de déterminant nul, alors I'une des colonnes de A
est multiple de I'autre.

) (a,b € C) est inversible.

(d) Si deux lignes d’une matrice carrée A de dimension 3 sont identiques, alors det A = 0.

Si A est une matrice carrée de dimension 3, alors det(5A4) = 5det A.

—_~
)
~

—
=

Si B est la matrice obtenue en multipliant la ligne 3 d’une matrice carrée A de dimension 3
par 5, alors det B = 5det A.



LISTE 4 : FONCTIONS DE PLUSIEURS VARIABLES (1)

A préparer AVANT de venir a la répétition

‘I. Définitions et représentations graphiques‘

Qu’appelle-t-on
1. domaine de définition d’une fonction de 2 variables ?
2. courbe de niveau d’une fonction de 2 variables ?

3. surface quadrique ? Quelles sont les différentes quadriques ?

‘II. Dérivation et gradient‘

1. Quand dit-on qu’une fonction de 2 variables est dérivable par rapport & sa premiere (resp. deuxieéme)
variable en un point de coordonnées (xg,yo) d’un ouvert ou elle est définie ?

2. Qu’appelle-t-on dérivée partielle d’une fonction de deux variables ?

3. Définir le gradient d’une fonction de plusieurs variables.

Les fonctions de plusieurs variables apparaissent tout naturellement dans de nombreux domaines.
Ainsi, par exemple, la distance d’un point de Iespace (muni d’un repére orthonormé) a l’origine s’exprime

par
d(z,y,2) = Vx? +y? + 22

si x,y, z sont les coordonnées du point, la loi des gaz parfaits
pV =nRT

(ot p est la pression du gaz (en pascal), V est le volume occupé par le gaz (en meétre cube), n est la
quantité de matiere (en mole), R est la constante universelle des gaz parfaits et T est la température
absolue (en kelvin)) permet d’exprimer la pression (par exemple) en fonction des autres parametres, . ..

Les exemples sont nombreux et la bonne manipulation (expression d’une variable ou d’un parametre
en fonction des autres, dérivation, intégration, ...) de ces fonctions est indispensable pour bien utiliser
les modeles de divers phénomeénes (physiques, chimiques, biologiques, . ..)
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A résoudre PENDANT la répétition
(et & achever a domicile si nécessaire)

Lors de la répétition, les exercices I. 1(g) - 2(b) ainsi que II. 2(h) - 5(c) - 8 et 10 seront
résolus par ’assistant.

I. Définitions et représentations graphiques‘

1. Déterminer le domaine de définition des fonctions données explicitement ci-dessous et le représenter.

2

f(z,y) =In <y4 — 2?4+ 1) . g(zyy) =+/2x—y, h(z,y) = arcos(xy).

2. Dans chacun des cas suivants, représenter les courbes de niveau d’équation f(z,y) = c si
a) f(z,y) =4z —yetc=-2, 4
b) flx,y) =2 —y* et c=—1, 0, 1
c) flz,y) =2 —yetec=-2,1

3. On se place dans ’espace muni d’un repere orthonormé ; on appelle X, Y, Z les trois axes de celui-
ci.
a) Quelle est la nature de la surface quadrique d’équation cartésienne x2 + y? — 422 =17
b) Représenter la trace de la surface d’équation cartésienne x2+y? —42% = 1 dans le plan d’équation
z = 0 puis dans celui d’équation x = 0. Comment appelle-t-on chacune de ces courbes ?

4. Esquisser les représentations graphiques des surfaces quadriques dont les équations cartésiennes

sont ) )
a)%—i—yQ—i—%:l b)a? +y? = 4.

. Dérivation et gradient‘

1. En appliquant la définition des dérivées, montrer que la fonction f donnée explicitement par
f(x,y) = 322 + 2y, (x,y) € R? est dérivable par rapport & sa premiere variable au point (—1,2)
et donner la valeur de cette dérivée partielle en ce point.

2. On donne les fonctions f, g et h par
fla.y) =ln@® —4+y), glz,y) = cos(@®y® +4y) et h(z,y) =2/,

a) Déterminer leur domaine de définition, de dérivabilité et les représenter dans un repére ortho-
normé.
b) Déterminer les dérivées partielles de ces fonctions.

3. On donne la fonction f par f(x,y) = In(y/x2 + 4y?).

a) Déterminer son domaine de définition et d’infinie dérivabilité.
b) Dans le domaine d’infinie dérivabilité, calculer D f + D2 f.

4. a) Déterminer le gradient de la fonction f donnée par f(z1,xe,73) = 2% o sin(3x3).
b) Méme question pour la fonction g donnée par g(z,y,2) = 22e?V’VE,

5. On donne les fonctions f et g respectivement par

f(z,y) = arcsin (y/z)  g(z,y) = exp(v/z +y2 + 1).



10.

11.

a) Déterminer le domaine de définition A et d’infinie dérivabilité B de ces fonctions. Représenter
ces domaines.

b) Déterminer 'expression explicite de |z| D, f(x,y) + |y| Dy f(z,y).

c¢) Déterminer 'expression explicite de F'(t) = f (1/t,t), le domaine de dérivabilité de cette fonc-
tion et I'expression explicite de sa dérivée.

d) Déterminer 'expression explicite de G(t) = g(sin(t), cos(t)), le domaine de dérivabilité de cette
fonction et ’expression explicite de sa dérivée.

On donne la fonction f(z,y) = /22 + y2.

a) Déterminer son domaine de définition A et celui d’infinie dérivabilité B.
b) Si on définit F par F(x,y) = f(x,y)(D3f(z,y) + D.f(x,y)), (x,y) € B, montrer que F est
une fonction constante et déterminer cette constante.

On considére la fonction f,.(x,y) = z"e™%/, r étant un réel.

a) Déterminer son domaine de définition A et celui d’infinie dérivabilité B.

b) Déterminer le réel r tel que D, f,(2,y) = yDj fr(x,y) + Dy fr(z,y), (z,y) € B.

On donne la fonction f(z,y) = sin(ax)cos(by) ou a et b sont des constantes réelles non nulles.
Montrer que f vérifie 'équation des ondes D? f — (az/bQ)Dflf =0.

L’expérience montre que, dans un champ de température, la chaleur s’écoule dans la direction et
le sens dans lesquels la température décroit le plus vite. Trouver cette direction et ce sens en tout
point du champ puis en un point P donné dans les cas suivants :

a) T(x,y) = 22 — y? et P a pour coordonnées (2,1)

b) T(z,y) = arctan (y/x) et P a pour coordonnées (2,2)

Esquisser I'isotherme correspondant & la valeur 3 dans le premier cas et & m/4 dans le second ainsi
que les vecteurs qui correspondent a la direction et au sens obtenus au point P.

On donne la fonction f explicitement par
f(z,y) = arcos(1 — 2zy).

(a) Déterminer le domaine d’infinie dérivabilité de cette fonction.
(b) Dans un repere orthonormé, représenter ce domaine en le hachurant.
(c) Calculer l’expression suivante en tout point de ce domaine et la simplifier au maximum.

On donne la fonction f explicitement par

flz,y) =In(z* —y*) —In(y).

(a) Déterminer le domaine d’infinie dérivabilité de cette fonction.
(b) Dans un repere orthonormé, représenter ce domaine en le hachurant.
(c) Calculer l’expression suivante en tout point de ce domaine et la simplifier au maximum.

D, f(x,y) +yDy f(z,y)
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LISTE 5 : FONCTIONS DE PLUSIEURS VARIABLES (2)

A préparer AVANT de venir a la répétition

‘I. Dérivation des fonctions composées‘

1. Quappelle-t-on fonction composée ?

2. Quel est I’énoncé du théoreme donnant les dérivées partielles d’une fonction composée a partir des
dérivées partielles des fonctions de départ ?

‘II. Description d’ensembles

Revoir les exemples du cours.

A résoudre PENDANT la répétition
(et a achever a domicile si nécessaire)

Lors de la répétition, les exercices I. 1(a) - 4 et 5(a) ainsi que II. 1(a) - 4(a) et 6(A) seront
résolus par 1’assistant.

‘I. Dérivation des fonctions composées‘

1. a) On donne f, contintiment dérivable sur | —2,4[x] —5, 5[. On demande le domaine de dérivabilité
de la fonction F' définie par F(x,y) = f(x + 2y, 2x — 5y), sa représentation graphique ainsi que
I’expression des dérivées partielles de F' en fonction de celles de f.

b) Méme question pour g, fonction contintiment dérivable sur]0, 1[x]1n (7/3), +oo[ et G(z,y) =
g(exp(x), In(arcos(y))).

2. On donne la fonction g continiiment dérivable sur | — /2, 7/6[x]0, +00[x]0, 10/9].
a) Déterminer le domaine de dérivabilité de f : ¢+ f(t) = g(arcsin(2t),1/y/t + 1,12 + 1).
b) Calculer la dérivée de f en fonction des dérivées partielles de g.
c) Si elle est définie, que vaut cette dérivée en 07 en 1/37
d) Mémes questions si g est continiiment dérivable sur | — 7/6, 7/3[x]v/2, +00[x]0, 3].

3. Soit F(t) = f(x(t),y(t)) avec x(3) =2, y(3) =7, (Dx)(3) =5, (Dy)(3) = —4, (D1f)(2,7) =6 et
(D2f)(2,7) = —8. En supposant satisfaites les hypotheses du théoréme de dérivation des fonctions
composées en 3, que vaut (DF)(3)?

4. Soit F'(s,t) = f(u(s,t),v(s,t)). En supposant satisfaites les hypotheses du théoreme de dérivation
des fonctions composées en(1,0) si
u(1,0) =2 (Dsu)(1,0) = -2 (Du)(1,0) =6
v(1,0) =3 (Dsv)(1,0) =5 (Dw)(1,0)=4
et (Duf)(2,3) = —1 et (Dyf)(2,3) =10, calculer (DsF)(1,0) et (D:F)(1,0).
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5. (a) Soient
feCi(0,1[x] —o00,0]) et F(t)=f (m (1521> ,t2+t6).

Ou la fonction F est-elle dérivable 7
Quelle est I'expression de sa dérivée en fonction des dérivées partielles de f 7
(b) Méme question pour

f € C1(]0, +00[x]0, +o0[) et F(x)= fle ™ —1,In(5 — z?)).

6. On donne la fonction (z,y) — f(z,y) définie et 2 fois continiment dérivable sur R? \ {(0,0)}. On
effectue le changement de variables en coordonnées polaires z = rcos(f), y = rsin(f) (r > 0et 0 €
[0,27]) et on considere F(r,8) = f(r cos(), rsin(h)).

1
Montrer que (D, f)? + (D, f)* = (D, F)* + —2(D9F)2
r
Remarque : le premier membre est pris au point de coordonnées (r cos(8), r sin(f)) et le second en
(r, 0).

‘ II. Représentation d’ensembles ‘

1. Dans un repere orthonormé du plan, représenter, en le hachurant, I’ensemble dont une description
analytique est la suivante
a) A={(z,y) €R?:0 <y < inf{z,vV1—2%}}
b) B={(z,y) €eR*:2>0, 0 <y <2z?}
c) C={(x,y) eR*: x>y, y€[0,1]}
2. Décrire analytiquement les ensembles hachurés suivants, les points des bords étant compris dans
I’ensemble, en donnant d’abord
a) 'ensemble de variation des abscisses
b) ensemble de variation des ordonnées.

Ya
Y 4 3 )
I 2
2+——
7

N -3

3. Dans un repere orthonormé, représenter graphiquement les ensembles A et B si
A={(z,y) €ER?*:2>0,2-2<y <2 2*+y* >4} B={(z,y) eR?®:2x>1, 1)z <y < Va}.

Pour chacun de ces 2 ensembles,

a) déterminer leur ensemble X (respectivement Y') de variation des abscisses (resp. des ordonnées)
b) & abscisse (resp. ordonnée) fixée dans X (resp. Y') donner I’ensemble de variation des ordonnées
(resp. des abscisses) de leurs points

¢) donner 2 descriptions analytiques en se servant des 2 items précédents.

4. Décrire analytiquement ’ensemble borné fermé hachuré suivant en commencant par ’ensemble de
variation des ordonnées puis, & ordonnée fixée, ’ensemble de variation des abscisses.
Faire de méme en commencant par ’ensemble de variation des abscisses.
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b)
a) y
B
A T 9// T X
D
%
Y|
C
c) s
2
A
0 X
0 1 2 3 4 5 6 7 8 9

y=x+1

5. On donne ’ensemble B suivant. Représenter graphiquement celui-ci en le hachurant.
B = {(z,y) €R?:x €[0,2n], sin(2z) <y < sin(x)}.

6. En utilisant les coordonnées polaires, décrire analytiquement les ensembles hachurés suivants, les
points des bords étant compris dans A mais non dans B.

Y= VY
2 \\\\\‘
A k
/’ \ L,
Kz\ 2 %1\ /A 2 X
\ g /

7. Dans un repére orthonormé du plan, représenter, en le hachurant, I’ensemble dont une description
analytique est
E={(z,y) eR*: 1<z <0, y>0, 22 +y> > 1}.

Ensuite, décrire analytiquement cet ensemble en utilisant les coordonnées polaires.



LISTE 6 : REVISIONS EN VUE DE L'INTERROGATION
DU 31 MARS 2026

13

Liste a établir en fonction de la matiere prévue pour l'interrogation

LISTE 7 : REVISIONS EN VUE DE L INTERROGATION
DU 31 MARS 2026

Liste & établir en fonction de la matiere prévue pour l'interrogation
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LISTE 8 : FONCTIONS DE PLUSIEURS VARIABLES (3)

A préparer AVANT de venir a la répétition

‘I. Permutation de ’ordre d’intégration‘

Qu’appelle-t-on < permutation de l'ordre d’intégration > dans le calcul des intégrales doubles ? Peut-on
toujours le faire sans changer la valeur du résultat si on integre sur un ensemble fermé borné ?

‘II. Intégration sur des ensembles fermés bornés‘

Quand une fonction de 2 variables est-elle intégrable sur un ensemble fermé borné ?

A résoudre PENDANT la répétition
(et & achever a domicile si nécessaire)

Lors de la répétition, les exercices I. 1(a), II. 2(b) et 3(b) seront résolus par ’assistant.

I. Permutation de ’ordre d’intégration‘

1. Supposons que la fonction f est intégrable sur I’ensemble considéré. Permuter les intégrales et
représenter I’ensemble d’intégration dans les cas suivants

o[ ( / e ) ay 0 [ ( / e dm) .

2. On considere une fonction f intégrable sur ’ensemble hachuré fermé borné A ci-dessous. Ecrire,
dans un ordre et dans 'autre, 'intégrale Y

//A f(x,y)dz dy. 31

‘II. Intégration sur des ensembles fermés bornés

1. Dans le plan, on considére ’ensemble borné fermé A délimité par le graphique de la droite
d’équation cartésienne x +y = 0 et celui de la fonction z > —22.
a) Représenter A dans un repére orthonormé et en donner une expression analytique.

b) Calculer, si elle existe, 'intégrale de f sur A si f: (z,y) — f(x,y) = zcos(y).

2. Si elle existe, calculer 'intégrale de
a) f(r,y) =4+ 2% sur A={(z,y) eR*: 2 €[-2,2], y € [l + 22,9 —2?]}
b) f(x,y) = cos(y?) sur A = {(z,y) €eR?>: 2 € [-1,0], y € [-x,1]}
c) f(x,y) = y?cos(zy) sur A = [r/2,7] x [-1,1]
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3. Si elle existe, déterminer la valeur de 'intégrale sur 'ensemble A borné fermé hachuré ci-dessous

dans les cas suivants

a) [[,e" Y dedy b) [[,zy dxdy

Y sk Y

Al s
15 -

: o], e

dx dy

.

1 2 3

=T Rl |

Vr 'z
4. Soit I:/ / cos(Va3) dx | dy.
0 y

2

Représenter ’ensemble d’intégration et calculer I'intégrale si c’est possible.

r=4
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LISTE 9 : CORRECTION DE L'INTERROGATION
DU 31 MARS 2026
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LISTE 10 : FONCTIONS DE PLUSIEURS VARIABLES (4)

A préparer AVANT de venir a la répétition

I. Intégration sur des ensembles non fermés bornés ‘

1. Si une fonction est continue sur un ensemble A non fermé borné parallele a 'axe Y, quand dit-on
qu’elle est intégrable sur A? Comment définit-on alors son intégrale 7

2. Méme question si ’ensemble A est parallele & 'axe X.

3. Si une fonction est continue sur un ensemble A non fermé borné, quand peut-on permuter l'ordre
d’intégration sans changer la valeur de l'intégrale ?

A résoudre PENDANT la répétition
(et & achever a domicile si nécessaire)

Lors de la répétition, les exercices I. 2(b) et 4 seront résolus par ’assistant.

‘I. Intégration sur des ensembles non fermés bornés‘

1. Si elles ont un sens, calculer les intégrales suivantes et représenter ’ensemble d’intégration.
1
a) // —drdy avec A={(r,y)eR®:2x>1,0<y<1/z}
AT

1 “+o00
b) / (/ ey dx) dy
—00 0

C)// e dedy  avec A={(z,y) eR?:0< 2 <y}
A

d)// x?’e—fzydxdy avec A= {(z,y) eR?®:2>0, 1 <uzy}
A

2. Déterminer si les intégrales suivantes existent ; si oui, les calculer. Représenter géométriquement
I’ensemble d’intégration dans chaque cas.

+o0 y? —y? 1 +o0 1 z? 1
a)/ / ye 5 dz | dy, b)/ ( % dy) dx, c)/ / dy | dx
0 o Tty o \Ja T°HY o \Jo Tty

3. On considere 'intégrale double suivante

+oo xT
I :/ (/ cos(y —x)e ™ dy) dx
0 0

a) Permuter l'ordre d’intégration et représenter I’ensemble d’intégration dans un repere ortho-
normé.

b) Si elle existe, déterminer la valeur de cette succession d’intégrales dans un ordre et dans l'autre.
¢) Trouve-t-on la méme valeur quel que soit 'ordre d’intégration ? Pouvait-on le prévoir sans cal-
culer les 2 intégrales ?
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4. Calculer l'intégrale de f : (z,y) — f(x,y) = z —y sur ensemble fermé hachuré suivant (et donner
une description analytique de cet ensemble)

Y
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LISTE 11 : FONCTIONS DE PLUSIEURS VARIABLES (5)

A préparer AVANT de venir a la répétition

‘I. Intégration par changement de variables polaires‘

1. Que vaut le jacobien dans le cas d’un changement de variables polaires 7

2. Donner la formule d’intégration par changement de variables polaires dans le cas d’une fonction
continue sur un ensemble fermé borné.

A résoudre PENDANT la répétition
(et a achever a domicile si nécessaire)

Lors de la répétition, ’exercice I. 1(b) sera résolu par ’assistant.

‘I. Intégration par changement de variables polaires‘

1. Si elle existe, calculer

a) / / Vo2 +y2drdy ou A est Pensemble hachuré ci-dessous.
A

b) / / xy drdy ou B est 'ensemble hachuré ci-dessous.
B

c) //C 2z +y)derdy ou C={(r,y) €R?:0<y<inf{—x,V1—22}}.

>

I I
-2 -1 1 2
X

2. Soit A une partie du plan (bornée et fermée). Le centre de masse de A (considéré homogene) est
défini comme le point de coordonnées (x4,y4) ol

xA:s_l//xdxdy, yA:s_l//yda:dy
A A

et ou s est l'aire de la surface A.
Déterminer la position du centre de masse d’une plaque homogene dont la forme est un tiers de
cercle de rayon R (R réel strictement positif).
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La masse d’une plaque plane est donnée par

m = //R d(z,y)dzdy,

ot §(z,y) est la densité au point de coordonnées (z,y). Considérons une plaque plane de la forme d’'un
triangle isocele rectangle R dont les cotés égaux mesurent 4 m. Si la densité en un point P est directement
proportionnelle au carré de la distance de P au sommet opposé a I’hypoténuse !, si I'on place I'origine
du repere sur ce sommet et si les axes OX et OY sont les prolongations des c6tés de méme longueur du
triangle R,

a) quelle est la masse de cette plaque ?

b) en quelles unités s’exprime la constante K ?

1. c’est-a-dire §(z,y) = K (22 + y?) (out K est une constante)
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LISTE 12 : APPROXIMATIONS POLYNOMIALES

A préparer AVANT de venir a la répétition

‘I. Approximations polynomiales ‘

1. Qu’appelle-t-on approximation polynomiale d’une fonction en un point de son domaine de définition ?
2. Quelle forme cette approximation a-t-elle quand la fonction est suffisamment dérivable ?
3. (a) Enoncer le résultat appelé “Développement limité de Taylor”.

(b) Relier ce résultat aux notions d’approximation polynomiale et de reste de I'approximation
polynomiale d’une fonction en un point.

Kokkok ok

A quoi peuvent servir ces approzimations ?
*Hok kK

Le théoréme des accroissements finis pour une fonction dérivable sur un intervalle ouvert I de R
s’exprime de la maniere suivante : quels que soient les réels a et x de cet intervalle, il en existe un autre
(notons-le &) situé entre a et x, tel que la valeur de la fonction en x s’exprime a partir de sa valeur en a
suivant 1’égalité suivante

f(@) = f(a) + (z —a)Df(§).
Ceci peut s’interpréter en disant que ’erreur commise en approchant la valeur de f en x par sa valeur en
a est proportionnelle & I’écart entre les deux points (a et z) et & la dérivée de la fonction f calculée en
un réel intermédiaire entre a et x.

Lorsque la fonction est plus réguliere, ce résultat peut étre étendu de la maniere suivante (c’est ce que
lon appelle le développement limité de Taylor). Si f est p fois dérivable dans I, alors quels que soient les
réels a et x de cet intervalle, il en existe un autre (notons-le £) situé entre a et x, tel que la valeur de la
fonction en x s’exprime & partir des valeurs en a de ses p — 1 premieéres dérivées suivant 1’égalité suivante

— (‘(I’. _ a)p—l p—1 ((E — a)p D
f(:c)—f(a)+(x—a)Df(a)+...+WD f(a)+TD f().
La fonction P définie par
(t—a)p!

P(t) = f(a) + (t—a)Df(a) + ...+ —Drlf(a), teR

(p—1!
est un polynome de degré au plus p — 1 en la variable t. Le développement limité de Taylor ci-dessus
s’écrit ainsi ( o
T—a
D)
et nous dit que la valeur de f en x est approchée par la valeur en = de ce polynéme, I'erreur commise
étant proportionnelle & I’écart entre la p® puissance de I’écart entre a et x et a la dérivée d’ordre p de la
fonction f calculée en un réel intermédiaire entre a et x.
Si a est fixé et que la dérivée d’ordre p de f est continue en a, alors on en déduit que
) —

lim 7“ )

T—a (x —
Ceci exprime de fagon précise la maniere dont le polynéme approche la fonction au voisinage de a. Voir
cours pour plus de détails.
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Ce genre de résultat est tres utile quand il s’agit d’obtenir une estimation de grandeurs physiques.

Ainsi par exemple, la force de marée agissant sur une masse m peut étre définie comme la différence
de l’attraction de la Lune sur cette masse située a la surface de la Terre et de I'attraction de la Lune sur
cette masse en supposant qu’elle est au centre de la Terre. Si on désigne par R le rayon terrestre, d la
distance? Terre-Lune, G la constante de gravité, M la masse de la Lune, on peut alors écrire

GMm GMm
(d — R)? d?
en un point de la surface terrestre situé sur la droite joignant le centre de la Terre et le centre de la Lune.

En tenant compte du fait que le rapport R/d est petit, une expression approximative (simplifiée) de la
force F' est donnée par

F =

2GMmR

Approx __
F = B

Exercice aprés lecture du préambule

Expliquer pourquoi une approximation de F' est donnée par ’expression précédente.

A résoudre PENDANT la répétition
(et a achever a domicile si nécessaire)

Lors de la répétition, les exercices I. 1 (f2, f3, f5) - 2 (b) - 3 seront résolus par ’assistant.

‘I. Approximations polynomiales ‘

1. Dans chacun des cas suivants, déterminer ’approximation polynomiale a ’ordre n en xy pour la
fonction fi. Représenter fo ( —-ou f5 ou fs— ) et ses approximations. Pour fs,
a) donner une expression explicite du reste de ces approximations.
b) indiquer ol se situe le graphique de f5 au voisinage de 0 par rapport & celui de chacune des
approximations en tenant compte du point précédent.

fi(x) = cos(x) €%, 29 =0,n=0,1,2,3 fo(x) =149z, 20=0,n=0,1,2
fa(x) =1/(1 —2x), xo =0,n 1,2 fa(x) = arctan(z), zo =0 (resp. g = 1),n=0,1,2
,2 fe(x) = sin(z), x0 =1,n=0,1,2

2. a) Déterminer l'approximation polynomiale & l'ordre 3 en 0 de la fonction cos et en estimer le
reste. Représenter la fonction et cette approximation dans le méme repére orthonormé.
b) Déterminer ’approximation polynomiale en 0 &4 Pordre 1, 2 et 3 de la fonction f(z) = zsin(x), = €
R. Représenter graphiquement ces approximations dans le méme repere orthonormé que celui ou
f est représenté (cf ci-dessous), en justifiant les positions relatives des courbes.
(Suggestion : |sin(z)| < |z| Vz € R)

y = xsin(x)

2. entre les centres respectifs
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3. Un professeur de mathématique lance un défi a ses éleves. Le premier qui donnera une approxi-
mation du nombre e avec les 3 premieres décimales exactes et pourra expliquer sa méthode aux
autres sera dispensé de la prochaine interrogation. Pour relever le défi, les éleves, restés en classe,
n’ont droit qu’a une feuille et un crayon. Ils sont sans acces a internet et ne peuvent utiliser ni
gsm, ni calculatrice ...

Comment peuvent-ils procéder ?

4. Déterminer ’approximation polynomiale & Iordre 0,1,2,3 en 0 des fonctions données par >

1—=z —xr+2
gi(z) =In (:17+ 1) » 92(2) 202+ —1

5. Un tunnel d’une longueur [ relie deux points de la surface de la Terre. Si R désigne le rayon de la
Terre, déterminer une approximation de la profondeur maximale p de ce tunnel.

P

3. Suggestion. Utiliser le développement de In(1 + x) et In(1 — z) pour g1 et décomposer en fractions simples pour gz
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LISTE 13 : DEVELOPPEMENTS EN SERIES DE PUISSANCES

A préparer AVANT de venir a la répétition

‘ Définitions et propriétés ‘

1. Quappelle-t-on série de puissances ?

2. Quand une série de puissances converge-t-elle
a) dans un intervalle ?
b) en tout réel ?

3. Quand et ou une série de puissances est-elle dérivable? Dans ce cas, qu’appelle-t-on dérivation
< terme a terme > 7

A résoudre PENDANT la répétition
(et a achever a domicile si nécessaire)

Lors de la répétition, les exercices 2 (f1, f7 et fs) seront résolus par D’assistant.

Développements en série de puissances‘

1. Si possible, développer les fonctions suivantes (données explicitement) en série de puissances de x
au voisinage de 0
r—1 -3z +2
ho=omp PO =gm—g5T

2. Déterminer le développement en série de puissances de x des fonctions suivantes

i) = 2% exp(—z), @ € R fola) = eh(r) = S wer
fo(r) = sh(x) = “ 20, e RS fa(z) = cos(x), z € R

f5(z) =sin(z), z €R fo(z) =In(l+z), €] —1,1]
ﬁ@):m(ii), v e]—1,1] fo(z) = arctan(z), = € R

4. Les fonctions ch et sh sont appelées respectivement cosinus et sinus hyperboliques
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LISTE 14 : MATHEMATIQUES APPLIQUEES

Les exercices de cette liste montrent des applications de notions mathématiques étudiées dans le cadre
du cours de Mathématiques générales. Ces applications relevent de la physique, de la biologie, du calcul
des probabilités, de la géographie et méme de la cryptographie.

A résoudre PENDANT la répétition
(et & achever a domicile si nécessaire)

Fonctions de plusieurs variables ‘

1.

En thermodynamique, il existe essentiellement 3 types d’équilibres macroscopiques : ’équilibre
thermique, 1’équilibre mécanique et I’équilibre osmotique (mélange homogene®). Dés lors, par
définition, un équilibre thermodynamique est atteint lorsque ces 3 équilibres sont réunis.

Selon le premier postulat de la thermodynamique, I’équilibre thermodynamique d’un systéme phy-
sique se définit a l'aide de 3 parameétres : I'énergie interne U, le volume V et le nombre de particules
N du systéme.

Le second postulat stipule qu’il existe une fonction S, dépendant de U, V' et N, qui est mazimale a
l’équilibre thermodynamique. Cette fonction est appelée entropie du systeéme et la connaitre, c’est
connaitre I’ensemble du systeme. Cette fonction permet de plus de déterminer les équations d’état
qui régissent le systeme : ces dernieres font intervenir les dérivées partielles de S et sont données

par
s 1 s p s —u
D = — = — D = — = D — - _"
v <8U>V7N T ve <av)U,N T o (azv)w T
oll

— T est la température du systeme;

— p est la pression du systeme;

— pu est le potentiel chimique du systéme (qui renseigne sur I’équilibre osmotique d'un systeme %) ;
et ou les variables indicées sont considérées comme constantes.

Sachant que lentropie du gaz de Van Der Waals (archétype des gaz réels), est donnée par
_ A2
Vv NUO)+3/€BNIH<U+K1N /V>+3kBNln (47rm) 5

SkBN1n< ~ : - x ) + kN

ou

— kp est la constante de Boltzmann et vaut approximativement 1,38.10"2J/K,

— wvg est le volume occupé par une particule et dans lequel les autres particules ne peuvent
pénétrer,

— K, > 0 est le parametre d’interaction entre les particules,

— m est la masse d’une particule,

— B est la constante de Planck et vaut 6,626.10734J.s,

déterminer les équations d’état d’un tel gaz lorsque le nombre de particules N est constant et, a

partir de la premiere équation d’état, exprimer ’énergie interne U en fonction de V, N et T

5. Par exemple, si on jette une goutte d’encre dans un verre d’eau, ’encre va “diffuser” dans le liquide et ’équilibre est
atteint lorsque ’encre est mélangée de facon homogene avec ’eau.

6. De maniere générale, si deux substances de potentiels chimiques respectifs w1, u2 sont mises en présence 'une de
l’autre, ’équilibre thermodynamique est atteint lorsque p1 = po.
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2. La pression P (en kPa), le volume V (en ) et la température T’ (en K) d’une mole d’un gaz parfait
sont liés par I'équation 7 :

PV =8,31T.

Sachant que, lors d’une mesure a U'instant ¢, la température d’'un tel gaz, qui est de 300K, aug-
mente & la vitesse de 0,1K/s et que son volume, qui est de 1001, augmente & raison de 0,21/s,
déterminer la vitesse de variation de la pression de ce gaz.

3. La recherche des extrema d’une fonction a une seule variable est relativement aisée : il suffit de
rechercher les valeurs en lesquelles la dérivée de cette fonction s’annule et de voir s’il s’agit d’un
minimum, d’un maximum ou d’un point d’inflexion. Cette recherche s’avere plus délicate pour une
fonction de plusieurs variables. Cependant, pour une fonction de 2 variables, nous disposons du
test suivant, appelé test des dérivées partielles :

Soient A une partie de R2, (a,b) € Aet f: (x,y) — f(z,y) une fonction 2 fois
continiiment dérivable sur A telle que

(D f)(a,b) = (Dy f)(a,b) = 0.

Posons

D = (D3 )(a,b)(Dyf)(a,b) = (D= Dy f)(a, b)].
(a) Si D> 0etsi(D2f)(a,b) > 0 alors f(a,b) est un minimum local de f;

(b) Si D > 0 et si (D2f)(a,b) < 0 alors f(a,b) est un maximum local de
fs

(¢) Si D <0 alors f(a,b) n’est ni un minimum local, ni un maximum local
de f; (a,b) est appelé “point-selle” ;

(d) Si D =0 alors le test n’est pas concluant.

En se basant sur ce test,
a) rechercher les extrema ainsi que les points-selles de la fonction

fi(@y) = flz,y) =2t +y* — 4oy + 1.

b) déterminer la distance® (c.-a-d. la plus courte distance) entre le point de coordonnées (1,0, —2)
et le plan d’équation cartésienne x + 2y + z = 4.

4. Si une charge électrique est répartie sur une région R et si la densité de charges (en unités par
unités carrées) est donnée par p(z,y) en un point(x,y) de R, alors la charge totale @ présente sur

cette région est donnée par
Q= // p(x,y) drdy.
R

Une charge électrique est distribuée sur le domaine triangulaire D de la figure ci-dessous de maniére
telle que la densité de charge en (z,y) est donnée par p(x,y) = 2xy, mesurée en coulombs par
metre carrés (C/m?). Calculer la charge totale présente sur D.

7. Cette équation est I’'une des équations d’état d’un gaz parfait, obtenue par dérivation partielle de ’entropie d’un tel
gaz (cf. exercice précédent).
8. Suggestion : la distance entre deux points de coordonnées (z1,y1,21) et (z2,y2,22) est donnée par
d=+/(z1 —22)% + (y1 — y2)% + (21 — 22)?
et, comme d > 0, minimiser d équivaut & minimiser d2.
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Y i
1 (1,1)
0 1 X

5. En physique, le moment d’inertie d’'une masse ponctuelle m par rapport & un axe est défini par le
produit mr2, ol r est la distance entre la masse ponctuelle m et 'axe. Cette notion se généralise
au cas d’une plaque de métal, qui occupe une région R du plan et dont la densité en (x,y) est
donnée par p(z,y), de la maniére suivante.

Le moment d’inertie d’une telle plaque par rapport a axe des abscisses (resp. des ordonnées) vaut

Ix :// 2?p(x,y) dedy (reSP. Iy:// y’p(z,y) dxdy)-
R R

Il peut également étre intéressant de considérer le moment d’inertie par rapport a lorigine O,
celui-ci étant donné par

o~ | /R (22 + y?)plz, ) dudy.

On remarque évidemment que Ip = Ix + Iy.

Soit un disque homogene D de densité p(z,y) = p et de diametre d. Déterminer
a) le moment d’inertie de ce disque par rapport & son centre;
b) le moment d’inertie de ce disque par rapport & une droite quelconque d’ passant par son centre.

6. Dans certains contextes, le calcul de probabilités peut se ramener a du calcul intégral. En effet,
lorsque l'on modélise une quantité X a l'aide d’une fonction de densité z +— fx(x) positive,
intégrable sur R et d’intégrale égale & 1, la probabilité que cette quantité soit supérieure (resp.
inférieure) a une valeur a € R (resp. b € R) est donnée par

+oo b
P[X >a] = / fx(x)dx (resp. P[X < b] :/7 fx(x) d:r).

De plus, si 'on s’intéresse a une autre quantité ¥ que 'on désire étudier conjointement avec X,
ces deux quantités peuvent étre modélisées simultanément a ’aide d’une fonction de densité jointe
(z,y) = fix,v)(z,y) positive et intégrable sur R? et telle que

/:" (/j fxn (@) dx) dy = 1,

auquel cas la probabilité que (X,Y) € R (R partie de R?) est donnée par

P(X,Y) € R] = / /R Sy (@, y) dedy.

Le patron d’une fabrique de batteries destinées aux appareils électroniques tels que les GSM, les
MP-3, etc... s’intéresse a la longévité de ses produits et décide d’étudier conjointement le nombre
maximal (qu’il note X), ainsi que le nombre minimal (qu’il note Y'), d’années de fonctionnement
de ces derniers. Aprés bien des calculs, il arrive a la conclusion que la fonction de densité jointe
de X et Y est de la forme
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- C(z +2y) si 0<y<x<10
f(X,Y) (‘Ta y) - { 0 sinon :

(a) Déterminer la constante C' pour que la fonction f(x y soit bien une fonction de densité jointe.
(b) Calculer la probabilité qu'une batterie fonctionne au plus 7 ans mais au moins 2 ans.

. Deux variables aléatoires X et Y, modélisées respectivement par les fonctions de densité fx et fy,

sont dites indépendantes lorsque leur fonction de densité jointe vaut le produit de leurs fonctions
de densité respectives, c.-a-d.

f(x,y)(w,y) = fx (@) fy(y)-
En outre, un temps d’attente T' est modélisé par une fonction de densité de la forme

0 sit<0
fT(t) - { lufleft/u sit>0

ou i > 0 est le temps d’attente moyen.

Le directeur d’'un cinéma constate que le temps d’attente moyen pour obtenir un ticket est de
10 minutes, et celui pour obtenir une boisson fraiche de 5 minutes. En supposant que ces temps
d’attente sont indépendants, calculer la probabilité qu'un spectateur attende au total moins de 20
minutes avant de prendre place en ayant son ticket et une boisson.

Calcul matriciel

1. Le mouvement d’une particule se déplacant dans le plan est régi par les équations différentielles

suivantes :

Dz(t) = —4z(t) - 3y(t) + 5t
{ Dy(t) —2z(t) — by(t) + Het -

Déterminer les composantes (z(t),y(t)) du vecteur position de cette particule & tout instant t.

. Le mouvement d’une particule se déplacant dans ’espace est régi par les équations différentielles

suivantes :
Dz(t) = x(t) +2y(t) — 2(¢)
Dy(t) = 2zx(t)+4y(t) — 2z(¢)
Dz(t) = —z(t) —2y(t) + 2(t)

Déterminer les composantes (x(t),y(t), z(t)) du vecteur position de cette particule & tout instant ¢.

. Un individu vit dans un milieu ou il est susceptible d’attrapper une maladie par piqlire d’insecte.

Il peut étre dans I'un des trois états suivants : immunisé (I), malade (M), non malade et non
immunisé (S). D’un mois & l'autre, son état peut changer selon les régles suivantes :
- étant immunisé, il peut le rester avec une probabilité 0,9 ou passer a 1’état S avec une proba-
bilité 0,1
- étant dans I’état S, il peut le rester avec une probabilité 0,5 ou passer a I'état M avec une
probabilité 0,1
- étant malade, il peut le rester avec une probabilité 0,2 ou passer a I’état S avec une probabilité
0,8.
Déterminer
a) la matrice de transition du systéme;
b) la probabilité qu'un individu immunisé soit encore immunisé apres deux mois;
¢) la probabilité qu’a long terme, un individu soit immunisé.

. Un biologiste étudie le passage d’une molécule de phosphore dans un écosysteme. Celle-ci peut se

trouver dans le sol, dans I’herbe, dans le bétail ou peut disparaitre de 1’écosystéme. D’une heure
a lautre, le transfert peut s’effectuer selon les modalités suivantes :
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- étant dans le sol, la molécule a 3 chances sur 5 d’y rester, 3 chances sur 10 de passer dans
I’herbe et 1 chance sur 10 de disparaitre ;

- étant dans l'herbe, elle a 1 chance sur 10 de revenir dans le sol, 2 chances sur 5 de rester dans
I’herbe et 1 chance sur 2 de se retrouver dans le bétail ;

- étant dans le bétail, elle a 3 chances sur 4 de retourner dans le sol, 1 chance sur 5 de rester
dans le bétail et 1 chance sur 20 de disparaitre ;

- si la molécule disparait, elle ne réapparait plus nulle part.

Déterminer la matrice de transition du systeme.

5. La cryptographie, pour beaucoup de monde, est un moyen de maintenir des communications
privées. En effet, la protection des communications sensibles a été 1'objectif principal de la cryp-
tographie dans la grande partie de son histoire. Le chiffrage est la transformation des données
dans une forme illisible. Son but est d’assurer la sécurité en maintenant I'information cachée aux
gens a qui l'information n’est pas adressée, méme ceux qui peuvent voir les données chiffrées. Le
déchiffrage est I'inverse du chiffrage ; c’est la transformation des données chiffrées dans une forme
intelligible.

Aujourd’hui, les gouvernements emploient des méthodes sophistiquées de codage et de décodage
des messages. Un type de code, qui est extrémement difficile a déchiffrer, se sert d’une grande
matrice pour coder un message. Le récepteur du message le décode en employant I'inverse de la
matrice. Voici un exemple de codage/décodage d’un message par ce procédé.

Considérons le message

SUIS EN DANGER

(4 3)=¢

Pour le codage, on assigne a chaque lettre de I'alphabet un nombre, a savoir simplement sa position
dans I'alphabet, c’est-a-dire A correspond a 1, B correspond a 2, ..., Z correspond a 26. En outre,
on assigne le nombre 27 & un espace. Ainsi, le message devient :

s U 1 s * E N * D A N G E R
19 21 9 19 2r 5 14 2r 4 1 14 7 5 18

Puisqu’on emploie une matrice 2 x 2, on décompose la forme numérique de ce message en une suite
de vecteurs? 1 x 2 :

(19 21), (9 19), (27 5), (14 27), (4 1), (14 7), (5 18).

On code alors le message en multipliant chacun de ces vecteurs par la matrice de codage C, ce qui
peut étre fait en définissant une matrice dont les lignes sont ces vecteurs et en multipliant cette
derniere par C, ce qui nous donne :

ainsi que la matrice de codage

19 21 -2 25
9 19 ~10 39
27 5 L o 22 -39
14 27 ( s ): ~13 53
41 3 -5
14 7 T T
5 18 ~13 44

Des lors, le message crypté est donné par les lignes de cette derniere matrice que l'on place bout
a bout pour la transmission :

—2, 25, —10, 39, 22, —39, —13, 53, 3, —5, 7, —7, —13, 44.

Enfin, pour décoder le message, le récepteur a recours a la méme technique que celle employée
pour le codage mais en utilisant 'inverse de la matrice de codage, qui est donnée ici par

9. Dans le cas ou il faut compléter le dernier vecteur, il suffit d’y placer des “27”, ce qui revient & compléter le message
par des espaces pour avoir un nombre de caractéres qui soit multiple de la dimension de la matrice de codage.
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(32
=(7 1)

Il doit donc calculer le produit

-2 25 19 21
—-10 39 9 19
22 -39 3 9 27 5
-13 53 ( 11 ) =\| 14 27
3 ) 4 1
7 -7 14 7
—-13 44 5 18

et il retrouve bien la matrice correspondant au message de départ, ce qui lui permet de lire le
message :

19 21 9 19 2r 5 14 27 4 1 14 7 5 18
s uvu 1 s * E N * D A N G E R

Le Gouvernement a réussi a intercepter le message crypté suivant, provenant de I’ennemi public
n°l et destiné a ’ennemi public n°2 :

—18, —21, —31, 53, 48, 61, 3, —15, —21, —34, —30, —43, 45, 42, 48.

L’un de ses meilleurs espions infiltrés, James Bond, a découvert que la matrice utilisée par I’ennemi
pour coder ce message est la suivante :

-3 -3 —4
0 1 1
4 3 4

Malheureusement, il n’y connait rien en calcul matriciel et personne ne peut déchiffrer ce mes-
sage... Votre mission est de décoder ce message dans les plus brefs délais.

‘ Approximations polynomiales

La vitesse v d’une vague est liée a sa longueur d’onde A et & la profondeur h de I'eau (exprimées en

metres) par lexpression
9  gA 2rh
=—th|—
v 27 ( A )

ou g est l'accélération due a la pesanteur.

— Sachant que th : z — (e —e™")/(e® + e~ "), déterminer Papproximation polynomiale & l'ordre 1
en 0 de cette fonction.

— Grace a cette approximation, en sachant que la vague qui a ravagé le Japon en 2011 avait une
longueur d’onde de 5 km, a combien peut-on estimer la vitesse du tsunami lors de son arrivée pres
des cdtes (on suppose alors que la profondeur de 'eau est de 2 m) ?
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LISTE 15 : REVISIONS EN VUE DE L'EXAMEN

I. Description d’ensemble ‘

Décrire analytiquement I’ensemble borné fermé hachuré suivant (les courbes représentées sont une droite et
une parabole) en commencant par ’ensemble de variation des ordonnées puis, & ordonnée fixée, 'ensemble
de variation des abscisses.

Faire de méme en commencant par ’ensemble de variation des abscisses.

Y

‘II. Fonctions de plusieurs variables ‘

1. On donne la fonction f : (z,y) — In ( W) .
Va—y

a) Déterminer son domaine de définition, de dérivabilité et les représenter dans un repere ortho-
normé.

b) Déterminer les dérivées partielles de cette fonction et, si possible, les évaluer au point de coor-
données (—2,1).

2. Soit f une fonction contintiment dérivable sur | — 2,1[x] — 4,4[. On demande le domaine de
dérivabilité de la fonction F définie par F(z,y) = f(x +y?, 2% + 4y?), sa représentation graphique
ainsi que ’expression des dérivées partielles de F' en fonction de celles de f.

3. Si elles existent, calculer les intégrales suivantes

a) I = /04 </;xsin(y5)dy) da

b) I = / / eV do dy si A est 'ensemble fermé borné hachuré ci-dessous
A

Y,

N[

dx dy si A = [0, +00[x[0, +00]

@I:[AVﬁ+;+¢w
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+o0 2 6—(y+1)x
d) I = ————dy | dx
) /0 </0 4492 y)

|ITI. Calcul matriciel |

1. Calculer (si elle existe) la matrice inverse de la matrice suivante puis montrer que la matrice
trouvée est bien l'inverse de la matrice donnée si

-2 2 3
A= 1 -1 0
0 1 4

2. Rechercher les valeurs propres et les vecteurs propres de la matrice suivante. Cette matrice est-elle
diagonalisable 7 Pourquoi ? Si elle 'est, en déterminer une forme diagonale, ainsi qu’une matrice
inversible qui y conduit puis prouver que les matrices données sont correctes.

3 -2 =2
A= -2 3 =2
-2 -2 3

3. Pour inciter les jeunes a faire du sport, une association oblige ses affiliés a pratiquer, chaque
semaine, un sport sur les trois qu’elle propose (jogging, natation, basket). D’une semaine & 'autre,
les étudiants peuvent changer de choix.

- Ayant choisi le jogging, un étudiant a une chance sur deux d’aller & la piscine et une chance sur
deux de pratiquer le basket la semaine suivante.

- S’il a nagé une semaine, la semaine suivante, il a une chance sur trois de poursuivre la méme
activité, une chance sur trois de faire du jogging et une chance sur trois de pratiquer le basket.

- Enfin, §’il a joué au basket, il a une chance sur quatre de nager et trois chances sur quatre de
faire du jogging.

(i) Déterminer la matrice de transition.

(ii) Sachant que cette matrice est réguliere, calculer la probabilité qu’a long terme un étudiant
fasse du jogging.

‘IV. Approximations polynomiales ‘

Déterminer 'approximation polynomiale a 'ordre n =0, 1, 2 et 3 en xyg = 0 pour la fonction

xT —X

f:atl—>sh(ac)=e

— €

2

Représenter f et ses approximations.

V. Développement en série de puissances

Déterminer le développement en série de puissances de z la fonction f : @ — 1/(1 + 2?).



Chapitre 2

Calcul matriciel

2.1 Exercices de base sur le chapitre 1 (partim B)

Dans cette section figurent quelques exercices de base (dont il a été question durant les années
académiques mentionnées).

Liste 2002-2003

1. Soient les matrices _
—i
0
-1 1

S =

10 -1
A_<i 2 i+1)’ b=

iA, A+ B, A+ B, AA*, AB, BA, BB.

Calculer (si possible)

2. Calculer le déterminant des matrices suivantes.

o 0
(23) (a0 (30
Lt 11 1

3. Factoriser le déterminant des matrices suivantes.
r x? 23 —a—x a 0
1—-=z 2 9o 3
91— ) vy oy |, b —2b—z b
z 22 22 0 a —-a—x
4. Calculer (si elle existe) la matrice inverse de chacune des matrices suivantes.

10 1
<_11 _21> 01 -1
11 1

5. Rechercher les valeurs propres et les vecteurs propres des matrices suivantes. Ces matrices sont-
elles diagonalisables 7 Pourquoi 7 Si elles le sont, en déterminer une forme diagonale, ainsi qu'une
matrice inversible qui y conduit.

. 1 10
GG (L (hr) (3
0 0 1 1 -1 0

33
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QCM + justifier la réponse

Si A est une matrice carrée telle que A? = 0, alors A est la matrice nulle Vrai O Faux O
Le déterminant d’une matrice carrée dont les éléments sont des complexes est
un complexe O une matrice O un polyndéme O aucune proposition correcte O
Si A et B sont des matrices carrées de méme dimension qui vérifient AB = A, alors B est la
matrice identité Vrai O Faux O
Si A est une matrice qui vérifie A = A*, si ¢ € C et si on pose B = cA, alors B = B*
. Vrai O Faux O
Si M est une matrice qui vérifie MM = 1, alors M admet un inverse Vrai O Faux O
Si A, B sont deux matrices de méme format, alorsona A+ B=B+ A Vrai O Faux O
Si A, B sont deux matrices carrées de méme dimension, alors on a (A + B)? = A2 +2AB + B?
Vrai O Faux O
Les valeurs propres d’une matrice carrée réelle sont toujours des nombres réels
Vrai O Faux O

Une matrice carrée peut étre inversible et avoir une valeur propre nulle Vrai O Faux O
La somme de deux vecteurs propres de méme valeur propre est encore un vecteur propre de
méme valeur propre Vrai O Faux O

Liste 2003-2004

1.

Soient les matrices

-2 2

-1 (10 -1 o —i+2 3
A=| = o |, B(Z. 5 z’+1>’ C( B _Z,),
1

Si possible, effectuer les opérations suivantes. Si cela ne 1’est pas, en expliquer la raison.

iA, C*, A+ B, A+ B, AA*, AB, BA, CB, CA.

. . . . . . 11
Déterminer la forme générale des matrices qui commutent avec la matrice ( .

0 1

Calculer le plus rapidement possible le déterminant de chacune des matrices suivantes.

—2 -1 4 =2

— -1 0
( _12 i > -1 1 1 |, 1 -1 1
¢ 1 -1 1 1 -1 1

Le déterminant de la matrice suivante est un polynéme en x. Factoriser ce polynéme.

1—=x 1
2 2—x |

Factoriser le déterminant des matrices suivantes.

x x? 23 —a—x a 0
v oy? oy |, b —2b—x b
z 22 23 0 a —a—x

Calculer (si elle existe) la matrice inverse de chacune des matrices suivantes.

1

11
(121> 01 —1
Lot 10 1
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Rechercher les valeurs propres et les vecteurs propres des matrices suivantes. Ces matrices sont-
elles diagonalisables ? Pourquoi ? Si elle le sont, en déterminer une forme diagonale, ainsi qu’une
matrice inversible qui y conduit.

11 10 1 100 3o —2 4
(2 2)’ (11)’ (—il)’ 0 10, 2 6 2
01 1 4 2 3
Répondre aux questions suivantes et justifier la réponse.
— Si A est une matrice carrée telle que _ A? =0, alors A est la matrice nulle Vrai O Faux O
— Si M est une matrice qui vérifie MM = 1, alors M admet un inverse Vrai O Faux O
— Si A, B sont deux matrices de méme format, alorsona A+ B=B+ A Vrai O Faux O

— Si A, B sont deux matrices carrées de méme dimension, alors on a (A + B)? = A? +2AB + B>
Vrai O Faux O
— Les valeurs propres d’une matrice carrée réelle sont toujours des nombres réels
Vrai O Faux O

— Une matrice carrée peut étre inversible et avoir une valeur propre nulle Vrai O Faux O
— La somme de deux vecteurs propres de méme valeur propre est encore un vecteur propre de
méme valeur propre Vrai O Faux O
— La somme de deux valeurs propres d’une méme matrice est encore une valeur propre de cette
matrice Vrai O Faux O
— Si le complexe Ao est une valeur propre de la matrice M alors Ao est une valeur propre de la
matrice M Vrai O Faux O
— Si un complexe est une valeur propre d’une matrice, alors il est aussi valeur propre de la matrice
transposée Vrai O Faux O

Liste 2004/2005

1.

Soient les matrices

2

A -2 2 a+9° (1 0 -1 > <—3i+1 3>

= 2'3 5 B: . . 9 C: - - .
0 —1 1-4 v 2 i+1 44 —1

Si possible, effectuer les opérations suivantes. Si cela ne 1’est pas, en expliquer la raison.

iA, (iB)*, A+ B, A+ B, AA*, AB, BA, CB.

N O

Déterminer la forme générale des matrices qui commutent avec la matrice ( 0 (resp. avec

. 20 . 20
la matrice ( 01 ), avec la matrice ( 1 2 ) ).

Calculer le plus rapidement possible le déterminant de chacune des matrices suivantes.

i+t1 1 1 2 12
) a2 2
’ 3\ 1 2 2

Le déterminant des matrices suivantes est un polynéme en x. Factoriser ce polynéme en un produit
de facteurs du premier degré.

2—x —4 2—x —4
1 z+1 )’ -1 xz+1 /)

Factoriser le déterminant de la matrice suivante en un produit de polynémes du premier degré en
T,Y, 2.

1 z 2°
1y o
1 z 28
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Calculer (si elle existe) la matrice inverse de chacune des matrices suivantes (on donne « € R).
-1 1 cos(a)  sin(a) _11 ; _02
0 i)’ sin(a) —cos(a) )’ -

Si a est un réel donné, déterminer l'inverse de la matrice

1 2
0
0

o~ Q

a
a
1

Démontrer que si A est une matrice carrée qui vérifie A2 — A +1 = 0 alors A est inversible et
déterminer son inverse en fonction de A.

Rechercher les valeurs propres et les vecteurs propres des matrices suivantes. Ces matrices sont-
elles diagonalisables 7 Pourquoi 7 Si elles le sont, en déterminer une forme diagonale, ainsi qu'une
matrice inversible qui y conduit.

(22)(20)(20)(11-“) bl R
2 2 2 2 0 2 1+i 1 0 0 1 R

Répondre aux questions suivantes et justifier la réponse.
— Si A est une matrice carrée telle que A2 = A, alors A est la matrice nulle ou est la matrice
identité .  VraiO Faux O
— Si M est une matrice carrée qui vérifie MM = 1, alors M vérifie aussi MM =1
Vrai O Faux O
— Si A, B sont deux matrices de méme format, alors on a A(A+ B) = A2+ ABVrai O Faux O
— Si A, B sont deux matrices carrées de méme dimension, alors on a A? — B? = (A— B) (A+ B)
Vrai O Faux O

— Une matrice carrée peut étre inversible et avoir une valeur propre nulle Vrai O Faux O
— La somme de deux vecteurs propres de méme valeur propre est encore un vecteur propre de
méme valeur propre Vrai O Faux O
— La somme de deux vecteurs propres de valeur propre nulle est encore un vecteur propre de
valeur propre nulle Vrai O Faux O
— La trace du produit de deux matrices carrées de méme dimension reste la méme si on permute
lordre des facteurs du produit. Vrai O Faux O

2.2 Résolution des exercices de la “liste type 2002/2003”

Exercice 1
e On a

‘ i 0 -
ZA‘<—1 2i —1+z‘>‘

e La matrice A est une matrice de format 2 x 3 tandis que B est une matrice de format 3 x 2. Ces matrices
n’ayant pas le méme format, il est impossible de les additionner.

e Puisque B est une matrice de format 3 x 2, B est de format 2 x 3 et peut étre additionné a A, matrice
de méme format. On a

-2
2414 )7

DO ==

)=

O ==

-~ (10 -1 1
A+B<i 2 1+i)+<—i

e Puisque A est une matrice de format 2 x 3, A* est une matrice de format 3 x 2; le produit AA* est
donc possible et donne une matrice de format 2 x 2. On a
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_ 1 1 1 —1
A= 0 2 donc A* = 0 2 ;
—1 141 -1 1-4

ainsi,

1 —1
« (1 0 -1 _ 2 -1
AA_(i21+i> 0 2. _(—1 7)'
-1 1—1

e Le produit AB est possible puisque A est de format 2 x 3 et B de format 3 x 2; le produit est une
matrice de format 2 x 2. On a

1 i
10 -1 ‘ 2 1
AB_(i 2 1+i> o (1) _<—1—2i 2+i )

e Le produit BA est possible puisque B est de format 3 x 2 et A de format 2 x 3; le produit est une
matrice de format 3 x 3. On a

1 — 2 —2i —3
. 1 0 -1 . .
BA = —i 0 ( P2 14 ) = —i 0 )

o Le nombre de colonnes de B est différent du nombre de lignes de B ; le produit BB est donc impossible.

Exercice 2

e On a det ( _12 _51 ) =15—(-1).(-2)=3.

oOnadet( jz 2):i2+i2:_2_

e On a

1 0 -1 0 1 0
det 1 1 1 = 1 1 1 si on remplace Ly par L + L3

-1 1 1 -1 1 1

1 1 . p . - .
= (-1 117 —2 en développant le déterminant selon la premiere ligne.
Exercice 3
1—2 2

OOnadet( ):(1—;10)2—4:(1—x—2)(1—x+2):(—x—l)(3—x).

2 1—=z
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e On a
r 2% 28
det | v 3% o°
z 22 28
1 z 22
= ayz|1 y y? mise en évidence du facteur x sur Ly, y sur Lo et z sur Ls
1z 22
0 z—2 z°—=2
= 2yz|0 y—z y?—22 si on remplace Ly par L1 — L3 et Ly par Ly — Lg
1 z 22
0 1 otz r—zsur L
= zyz(z—2)y—2)|0 1 y+z mise en évidence du facteur { !
1 - .2 y — zsur Ly
1 z4=2 . . . s
= zyz(z—2)(y—2) 1 y+z en développant le déterminant selon la premiere colonne
= ayz(z—z2)(y—2)(y+z—z—2)
= wayz(r—z)(y —2)(y — o).
e On a

det

Exercice 4

e Posons A =

—a—x a 0
b —2b—=x b
0 a —-a—x
-z a 0
-z —2b—=z b si on remplace Cy par C; + Cy + C3
—x a —a—x
0 0 atx
—r —-2b—=x b si on remplace Ly par Ly — L3
—x a —a—x
(a+ ) :i _Qba_ * en développant le déterminant selon la premiere ligne
1 -2b—1z . -
—z(a+ x) 1 u mise en évidence du facteur (—z) sur C4

—z(a+x)(a+ 2b+ z).

1 -1

1 92 | Puisque det A =2 —1 =1 # 0, la matrice A est inversible. Déterminons les

cofacteurs (A); ; des éléments (A4); ;, (4,7 =1,2)de A. Ona (A)11 =2, (Ah12=1, (A)21 =1, (A)22 =
1. On obtient ainsi
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1 0 1
ePosons A= 0 1 -1 |.Ona
1 1 1
1 0 1
detA = |0 1 -1 si on remplace Lz par L3 — [
0 1 0
1 - , . . N
=11 9 en développant le déterminant selon la premiere colonne
= 1.

Puisque det A # 0, la matrice inverse existe. Déterminons les cofacteurs (A); ; des éléments (A); ;, (i,j =
1,2,3) de A. On a

1 -1 0 —1 0 1
Wia=1 ez W= et =] e
0 1 11 1 0
R e P S ) R T
0 1 1 1 1 0
War=| 0 L= @aa =] L= na=|f 0=t
Ainsi, on obtient
L 2 1 -1
A = A= -1 0 1
det A 1 -1 1
Exercice 5
5.1) Considérons la matrice A = ; ; .

— Le polynéme caractéristique de A est

det(A—\1) = 1;)‘ QiA =(1=XN)(2-X2)—-2=2-3A+A-2=22-3x=)\(\-23).
Les valeurs propres de A sont donc 0 et 3; ces valeurs propres étant simples, la matrice A est
diagonalisable.

— Cherchons les vecteurs propres associés a la valeur propre 0 c’est-a-dire les vecteurs non nuls

X<z>telsque(A01)X0. On a

(A—Ol)X_<2 9 ) ( y)-O@{ 9+ 2 = 0 @x—i—y—O@X—x( 1 )

Les vecteurs propres associés a la valeur propre 0 sont donc les vecteurs

XC<_11), CGCQ.

— Cherchons les vecteurs propres associés a la valeur propre 3 c’est-a-dire les vecteurs non nuls

Xz(i)telsque(A—?)l)X:O. On a

(-2 1 T\ —2rx+y=0 o - 1
(A—Sl)X—< 9 —1)<y>_0®{2x—y=0 & 2z y—O@X—x<2>.

Les vecteurs propres associés a la valeur propre 3 sont donc les vecteurs

1
X:c<2>7 c € Cy.
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. _ 1 1 14a_ (00
L:enna‘mceS(_1 2)esttellequeS AS(O 3)
. . 1 1
5.2) Soit la matrice A = 01 )

— Le polynome caractéristique de A est

det(A—x1)=| =N 1

0 1-amA-N

La matrice A possede donc la valeur propre double 1.
— Cherchons les vecteurs propres associés cette valeur propre 1 c’est-a-dire les vecteurs non nuls

X—<gyc>telsque(Al)X—O. On a

(A—l)X:<8 é)(i):0©y20©X=x<(1)>.

Les vecteurs propres associés a cette valeur propre sont donc les vecteurs

1
X:c(o), c € Cy.

Comme ils sont tous multiples du vecteur , deux vecteurs propres sont toujours linéairement

1
0
dépendants et donc la matrice A n’est pas diagonalisable.

1 . 1 4
5.3) Considérons la matrice A = < i i ) .
— Le polynéme caractéristique de A est

det(A—X1) =

Lo A 2 = (1=AP 1= (1= A—1)(1=A+1) = —A(2—\).

- 1=

Les valeurs propres de A sont donc 0 et 2; puisque ces valeurs propres sont simples, la matrice A
est diagonalisable.

— Cherchons les vecteurs propres associés a la valeur propre 0 c’est-a-~dire les vecteurs non nuls

Xz(Z)telsque(A—Ol)X:O. On a

- 1 T\ r+1iy =0 . o —1
(AOl)X—<_z. 1)<y>—0<:>{ ity =0 <:>x+zy—()<:>X—y< 1 >

Les vecteurs propres associés a la valeur propre 0 sont donc les vecteurs

XC(_12>, CECO.

— Cherchons les vecteurs propres associés a la valeur propre 2 c’est-a-dire les vecteurs non nuls

X—<gyc>telsque(A21)X—0. On a

B A T T\ —z+1iy =0 B L . v
(A 21)X_<—i —1><y>_0@{—ix—y20 & w+zy—0<:>X—y(l>.

Les vecteurs propres associés a la valeur propre 2 sont donc les vecteurs

X:c(i), c € Cy.
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—1

- . i 14a_ (00
LamatrlceS( 1 1)esttellequeS AS(O 2>.

1
5.4) Soit la matrice A= | 0

— Le polynome caractéristique de A est

I-x 1 0
det(A-X1)=| 0 1-X 0 [=(1-=)>
0 0 1-X

La matrice A admet donc la valeur propre triple 1.
— Cherchons les vecteurs propres associés a cette valeur propre 1 c’est-a-dire les vecteurs non nuls

x
X=| vy | telsque(4—1)X =0.On a
z
01 0 T 1 0
(A-1)X=10 0 0 y | =0ey=0X=z| 0 |+2| O
0 0 O z 0 1

Les vecteurs propres associés a cette valeur propre 1 sont donc les vecteurs

1 0
X=q 0 | +c2| O |, c1,c0 € C non simultanément nuls.
0 1

Trois vecteurs propres sont donc toujours linéairement dépendants; la matrice A n’est donc pas

diagonalisable.
0 -1 1
5.5) Considérons la matrice A= | 3 2 =3
1 -1 0

— Le polynéme caractéristique de A est

—A -1 1 —A -1 1
det(A-—X1)=| 3 2-X 3| = 3 2— A -3 si on remplace Lz par L3 — Ly
1 -1 - 14+ A 0 —1-=A
- -1 1-2X
= 3 2—A 0 si on remplace C3 par C3 + Cy
1+ A 0 0

— 1-N 3 2—A en développant selon la
- 14+ A 0 troisitme colonne

1T=NMNA=2)(A+1)

Les valeurs propres de A sont donc —1, 1 et 2; puisque ces valeurs propres sont simples, la matrice
est diagonalisable.
— Cherchons les vecteurs propres associés a la valeur propre —1 c’est-a-dire les vecteurs non nuls
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x
X=| y | tels que (A+1)X = 0. On a successivement
z
1 -1 1 T
A+1)X =3 3 -3 y | =0 = {w_y+2 0 (1)
1 -1 1 p r+y—z=0 (2)
- 2r =0 (1) +(©2)
2u—2z=0 (2)—(1)
- z=0
y==z
0
& X=y| 1
1

Les vecteurs propres associés a la valeur propre —1 sont donc les vecteurs
0
X=c| 1 |, ceCyg.
1

— Cherchons les vecteurs propres associés a la valeur propre 1 c’est-a-dire les vecteurs non nuls
x

X=| y | tels que (A—1)X = 0. On a successivement
z

-1 -1 1 x —x—y+z=0 (1)

(A-1)X = 3 1 =3 y | =0 & 3r+y—32=0 (2)

1 -1 -1 z x—y—2=0 (3)
dr —42=0 (2)+(3)
& y=0 1H+G)
x—y—2=0 3)

(

r==z 1
@{ T e X=z| 0 |.
y=0 1

Les vecteurs propres associés a la valeur propre 1 sont donc les vecteurs

1
X=c 0 R c € Cyp.
1
— Cherchons les vecteurs propres associés a la valeur propre 2 c’est-a-dire les vecteurs non nuls
x
X=1| y | telsque (A—21)X = 0. On a successivement
z
-2 -1 1 T —2x—y+2=0
(A-21)X = 3 0 -3 y | =0 & 3r—32=0
1 -1 -2 z r—y—2z=0
o { —2r—y+2=0
r—2z=0
{ r=z
=
y=-—z
1
&S X=z| -1
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Les vecteurs propres associés a la valeur propre 2 sont donc les vecteurs

1
X =c —1 s c € Cy.
1
0 1 1 -1 0 0
— Lamatrice S=| 1 0 —1 | est telle que ST1AS = 0 1 0
11 1 0 0 2

REMARQUES IMPORTANTES

Lors de Iinversion et de la diagonalisation de matrices, on vérifie aisément que la solution trouvée est

correcte.

— Quand on a déterminé la matrice inverse d’une matrice donnée, on vérifie que le résultat est correct
en effectuant le produit de la matrice de départ par la matrice trouvée. On doit obtenir la matrice
identité.

— Quand on a déterminé une forme diagonale A de la matrice de départ A et une matrice S qui y
conduit, pour savoir si le résultat est correct, on doit vérifier que ST1AS = A, ce qui est équivalent
a la vérification de I’égalité (bien plus simple!) AS = SA.

2.3 Solutions des exercices de la “liste type 2003/2004”

Exercice 1

-2 —2 .
1A = 1 0 ;O = ( 2 ;_ ! Z.4Z ) ; A+ B impossible car matrices de formats différents;
—1 )
R -1 3 8 —2i 242 -4 4 2
A+B=|[ —i 2 ;o AA* = 21 1 i i AB = —i 0 i ;
-2 241 2—-2i —i 2 —1+i 2 241
- -1 —1+2i \ (2425 6 1440\
BA(—1—52' —1+i>’ OB<1+42' —2i 1—52’)’

C A impossible car le nombre de colonnes de C n’est pas égal au nombre de lignes de A.

Exercice 2

(a b ) avec a,b € C.
0 a

Exercice 3
—-7,-6,0.

Exercice 4

z(z — 3).

Exercice 5

ryz(y — o) (2 — 2)(2 — y) et —z(x + a)(z + a + 2b).
Exercice 6
-1 1
2 )
( 1 > et 1 0 -1
Exercice 7

Premiére matrice : valeurs propres simples 0 et 3 donc matrice diagonalisable.
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Vecteurs propres relatifs a la valeur propre 0 : ¢ ( _11 > , ¢ €Cp.

Vecteurs propres relatifs a la valeur propre 3 : ¢ ; , ¢ € Cy.
. (-1 1 1 (0 0
La matrice S = ( 1 9 ) est telle que ST AS = ( 0 3 > .

Deuxiéme matrice : valeur propre double 1.

N 0 . . .
Vecteurs propres relatifs a la valeur propre 1 : ¢ ( 1 ) , ¢ € Cy donc matrice non diagonalisable.

Troisieme matrice : valeurs propres simples 0 et 2 donc matrice diagonalisable.

Vecteurs propres relatifs a la valeur propre 0 : ¢ ( EZ ) , ¢ € Cy.

Vecteurs propres relatifs a la valeur propre 2 : ¢ , c€Cp.

i

1
. Y A 1 (00

LamatmceS-(1 1)esttellequeS AS—(O 2).

Quatrieme matrice : valeur propre triple 1.

1 0
Vecteurs propres relatifs a la valeur propre 1 : ¢ | 0 | +c2 | 0 |, ¢1,c2 € Cnon simultanément nuls ;
0 1

la matrice n’est donc pas diagonalisable.

Cinquiéme matrice : valeurs propres —2 (simple) et 7 (double).

1 0
Vecteurs propres relatifs a la valeur propre 7: ¢ | =2 | 4+ | 2 |, ¢1,c2 € C non simultanément
0 1
nuls.
2
Vecteurs propres relatifs a la valeur propre —2 : ¢ 1 , ¢ € Cy.
-2
1 0 2 7 0 O
La matrice S=| -2 2 1 est telle que S™1AS=| 0 7 0
0 1 -2 0 0 -2

Exercice 8

Faux, vrai, vrai, faux, faux, faux, faux, faux, vrai, vrai.

2.4 Solutions des exercices de la “liste type 2004/2005”

Exercice 1

2 0 —i -1 .
A= 20 —i (iB*=| 0 -2 A+B:<1_Z.2Z ? _23>
—2i 1+ P o1

A+B: impossible car A et B ne sont pas de méme format.

. 12 —4-2i
AA_(—4+2¢ 3 )

AB : impossible car le nombre de colonnes de A (3) differe du nombre de lignes de B (2).
BA : impossible car le nombre de colonnes de B (3) differe du nombre de lignes de A (2).

(1 6 246
CB—(1+4¢ ~2i 1—5i>
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Exercice 2

Toute matrice commute avec ( (2) g )

Toute matrice diagonale commute avec

i)

)

Toute matrice du type ( CCL 2 ) commute avec ( ? 0 )

2
0

Exercice 3

Le premier déterminant est égal a 5 + 77 et le second a %

Exercice 4

Le premier déterminant se factorise sous la forme (3 — z)(x + 2) et le second sous la forme

LT 1T
2 2

—(z )(z )-

Exercice 5

Le déterminant se factorise sous la forme (z — y)(z — 2)(z — y)(z + y + 2).

Exercice 6

Les matrices inverses sont

(3 0) (ot )

N = W
N — N
(G288 Vi)

Exercice 7

1 —a O
L’inverse de la matrice donnée est 0 1 -—a
0 1

Exercice 8

Exercice 9

— Matrice ( 3 3 ) : valeurs propres : 0 et 4.
Vecteurs propres relatifsa A =0: ¢ ( 711 ) , ¢ € Cy.
Vecteurs propres relatifsa A =4 : ¢ < 1 > , ¢ €Cp.
. . . . -1 1 1 0 0
Cette matrice A est diagonalisable; si S = | |-ona STHAS = 0 4 )
. 2 0
— Matrice 9 o )¢ valeur propre : 2 (double).
? , ¢ € Cyp.
Cette matrice n’est pas diagonalisable car elle ne possede pas deux vecteurs linéairement indépendants.
— Matrice ( g (2) > : valeur propre : 2 (double).

1
0

Vecteurs propres relatifsa A =2: ¢

Vecteurs propres relatifsa A =2: ¢ < > + ( (1) ) avec ¢, ¢ € C non simultanément nuls.

Cette matrice A est déja diagonale.
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. 1 144\ o .
— Matrice ( 144 1 > : valeurs propres : —i et 2 4 1¢.
N . 1
Vecteurs propres relatifs a A = —i : ¢ 4 ) c € Cy.
N , 1
Vecteurs propres relatifsa A=2+1i: ¢ 1] c€ Co.

. . . o 1 1 i [ -1 0
Cette matrice A est diagonalisable; si S = < 11 ), ona S tAS = ( 0 24 )

1 10
— Matrice [ 0 1 0 | : valeur propre : 1 (triple).
0 0 1
1 0
Vecteurs propres relatifsa A=1:¢c| 0 | +c | 0 | avec ¢, € C non simultanément nuls.
0 1
Cette matrice n’est pas diagonalisable car elle ne possede pas trois vecteurs propres linéairement
indépendants.
1 -1 -1
— Matrice | —1 1 =1 | : valeurs propres : —1 (simple) et 2 (double).
-1 -1 1
1 1
Vecteurs propres relatifsa A=2:¢c| -1 | +¢ 0 avec ¢, ¢’ € C non simultanément nuls.
0 -1
1
Vecteurs propres relatifsa A=—1:¢c| 1 |,ce€ Cg.
1
1 1 1 2 0 0
Cette matrice A est diagonalisable;si S=| -1 0 1 |,ona S 'AS=| 0 2 0
0 -1 1 00 -1

Exercice 10

Faux, vrai, faux, faux, faux, faux, faux, vrai.



Chapitre 3

Fonctions de plusieurs variables

3.1

Exercices de base sur le chapitre 2 (partim B)

Dans cette section figurent quelques exercices de base (dont il a été question durant les années
académiques mentionnées).

Liste 2002-2003

1.

Quel est le domaine de définition et de dérivabilité des fonctions données ci-dessous ? Représenter
graphiquement ces domaines.
1

fiz,y) = m» fa(z,y) =In(z —y), fa(z,y) = In(|z] - |y|)

fa(z,y) = ew, f5(z,y) = arcos(z® +y?),  fe(z,y) = arctan (;) .

Calculer
Dif6($79)+D§f6($ay)7 D:L’Dyfb(x7y)

. Permuter les intégrales et représenter ’ensemble d’intégration.

/01 (/y:yf(x,y) d:v) dy, /01 (/O_QMf(a:,y) dy) da, /1+oo (/xijof(x,y) dy) da.

Y Vxz
Calculer / ( / sin(vz3) d:c) dy et représenter I'ensemble d’intégration.
0 y

2

On considere la partie A du plan bornée par les droites d’équation y = 2z, z = 0,y = 4. Représenter

A et calculer / / x dx dy.
A

On considere la partie A du plan délimitée par 'axe X et le graphique de la fonction cos(x),z €
[7/2,37/2]. Représenter A et calculer I'intégrale de f(x,y) = 2y sur A.

Calculer / / (x 4+ y) dedy o A est 'ensemble hachuré ci-dessous.
A
\y

2,

/

47
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7. Calculer / / V2 4+ y? dzdy ol A est 'ensemble hachuré ci-dessous.
A

Y

2-
.
1 2 X

x
8. Calculer / / ——— dxdy ou A est la partie hachurée ci-dessous
A /1442
Y
o
3
: / _ .2
, - y==x
1
1 -0.5 0.5 1 1.5 2 X
+o0 z? ze— T
9. Sielle existe, calculer 'intégrale / / Z dy | dx et représenter son ensemble d’intégration.
0 o T Y

10. Calculer lintégrale de f(z,y) = e~ @ ") sur A = [0, +00[x[0, +o0l.

Liste 2003-2004
1. Déterminer le domaine de définition des fonctions données explicitement ci-dessous et le représenter.

1

4 — 32— 92

flx,y) = o 9(zyy) = In(|z| + |y - 1).

2. Déterminer le domaine de définition et de dérivabilité des fonctions données explicitement ci-
dessous, les représenter et calculer les dérivées partielles.

x

fz,y) = m,

_ v’
flz,y) =1n (1:2+4 1> .

3. Déterminer ou la fonction (z,y) — In(x? + y?) est indéfiniment contintiment dérivable et calculer
D3 f(w,y) + Dy f(z,y).

4. On donne les fonctions (r,0) — f(r,0) = rcos(0) et (r,0) — g(r,0) = rsin(f). Ou ces fonctions
sont-elles dérivables 7 Dans cet ensemble, calculer

Drf(rv Q)DOQ(T’ 9) - Dgf(?“, Q)Drg(rv 9)
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5. Permuter les intégrales et représenter I’ensemble d’intégration dans les deux cas suivants

o [ 11 ( / ($+1)/2f<x,y>dy> @ v [ 01 ( /\;;f(x,y)dw> dy.

6. a) On donne 'ensemble A suivant (ensemble borné fermé), borné par les deux droites obliques et
les deux droites paralleles & Y. Calculer (et justifier I'intégrabilité) / / sin(z+vy) dxdy et simplifier
A

la réponse au maximum.

y
Y
14 (1,1)
Tl -
/8 /2 X
-1 4 (17_1)

b) On donne lensemble A suivant (ensemble hachuré, borné et fermé). Calculer (et justifier
lintégrabilité) // /Y% — 22 dady.
A

Y4

e

7. a) On donne I'ensemble A = {(x,y) € R? : z € [1,¢],y € [0,In(z)]} et la fonction (z,y) — f(x,y) =
y. Représenter A. Calculer (et justifier 'intégrabilité) I'intégrale de f sur A en choisissant un ordre
d’intégration. Effectuer a nouveau le calcul apres avoir permuté I'ordre d’intégration.

2

b) On donne A = {(z,y) € R? : y € [0,1],z € [y,1]} et la fonction (z,y) — f(x,y) = e* .
Représenter A. Etablir que f est intégrable sur A et calculer son intégrale.

c¢) On donne A = {(x,y) € R? : z € [1,2],y > 0} = [1,2] x [0, +00[ et la fonction (z,y) — f(z,y) =
ye Y. Représenter A. Etablir que f est intégrable sur A et calculer son intégrale.

d) On donne l'ensemble A = {(z,y) : ,y € R,0 <y < 1,1/¢y < = < 1/,/y} et la fonction
(,y) = f(z,y) = v Représenter A. Etablir que f est intégrable sur A et calculer son intégrale.

8. a) Représenter 'ensemble d’intégration et calculer (en justifiant)

1 0
/ (/ e~ Vaty? dy) dx.
0 —V1—x2
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b) Représenter 'ensemble d’intégration, calculer (en justifiant) et donner une interprétation géométrique

de l'intégrale suivante
1 V1—x2
/ ( / 1 dy) dx.
0 r—1x2

Suggestion d’exercices supplémentaires

1. Calculer et représenter ’ensemble d’intégration :

1 V1—z2
/ / y? dy | de.
0 0

2. L’intégrale suivante a-t-elle un sens ? Si oui, la calculer.

+oo —x —2x
e — €
—dx.
0 x

(Suggestion : transformer 1/z en une intégrale; permuter alors les intégrales.)

3. L’intégrale suivante a-t-elle un sens? Si oui, la calculer.

oo In(z)
g dz.
0 1-2z
(Suggestion : transformer In(z) en une intégrale : 2In(z) = 0+OQ (z%/(1+2%y) —1/(1+vy))dy ; permuter alors les intégrales.)

En déduire la valeur de fol In(z)/(1 —z)dx et de fol In(z)/(1 + x)dz, puis la valeur de S7%° 1/m?2

m=1
et de 327 (1) /m?2.

(Suggestions : Garnir, Fonctions de variables réelles II, pp 257—259.)

Liste 2004,/2005

1. Déterminer le domaine de définition des fonctions données explicitement ci-dessous et le représenter.

flzyy) =va2—y2+9, g(z,y) =Wn(lx +y|—1), h(x,h)=arcsin <1> .

r+y

2. Déterminer le domaine de définition et d’infinie dérivabilté des fonctions f, g données explicitement
ci-dessous, les représenter et calculer les dérivées partielles premieres et secondes de f, les dérivées
partielles premieres de h et |z|Dyg(x,y) + |y|Dyg(x,y).

f(z,y) =In(va? +y?), g(z,y) = arcsin (5) , Wa,y) =In(Va?+y+1).

3. On donne une fonction f, continiiment dérivable sur | — 1,1[x]0, +oo[. On demande le domaine
de dérivabilité de la fonction F : t +— f(In(t),e — e?) et 'expression de sa dérivée premiere en
fonction des dérivées partielles de f.

4. Permuter les intégrales et représenter ’ensemble d’intégration dans les cas suivants

a) /22 (/196/2 f(x,y)dy> de, b) /01 (/Zm4 f(a:,y)dy> dz ) /oﬁ (/ymf(x,y)dx> dy.
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5.

10.
11.

12.

On considere I'ensemble borné fermé du plan (parallélogramme) délimité par les droites dont les
équations équations cartésiennes sont les suivantes

di:x—y=0, di:2y+x=0, d3g:2y+x—2=0, dy:y—z=2.

Représenter cet ensemble et déterminer U'intégrale de f(z,y) = y sur celui-ci.

On considére l'ensemble A = {(z,y) €R? : 0 <y <inf{e " In(z +¢e)}}. Déterminer, si elle
existe, 'intégrale de f(z,y) =z + y sur A.

a) Calculer l'intégrale de f(x,y) = y?sin(zy) sur A = [0,7/2] x [0,1].

b) Calculer I'intégrale de f(z,y) =z +y sur A= {(z,y) : 0 <y <inf{z,v/1—22}}.

a) Calculer 'intégrale de f(x,y) = ze¥ sur 'ensemble borné fermé hachuré suivant (et donner une
description analytique de cet ensemble)

b) Calculer 'intégrale de f(z,y) = 22 sin(xy) sur Pensemble borné et fermé suivant (hachuré)
A

Y

1 (1,1)

£
S

Déterminer si les intégrales suivantes existent ; si oui, les calculer. Représenter géométriquement
I’ensemble d’intégration dans chaque cas.

+o00 z? (Ee_IQ +o0 z? 6—12
a)/ / —— dy | dz, b)/ / —— dy | dz,
0 o T°+tyY 0 o T°+tyY
1 +oo 1 z?
1
c)/ </ 2\/§ 5 dm) dy, d)/ / dy | dx
0 y TTFY -1 \Jo T+Yy

Calculer l'intégrale de f(z,y) = Va2 +y2 sur A= {(z,y) : 2 > 0,y < 0,22 +y? < 4}.
Soit A la surface fermée du plan bornée par les cercles de rayon respectivement 1,2, centrés a
lorigine et I'axe X. Calculer I'intégrale de f(z,y) = 1 + 3z + 8y? sur A.

Calculer et représenter ’ensemble d’intégration :

1 Vi-z?
/ </ > dy> dx.
0 0
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13. L’intégrale suivante a-t-elle un sens? Si oui, la calculer.

oo —x —2z
e — €
—dx.
0 €T

(Suggestion : transformer 1/z en une intégrale ; permuter alors les inte’grales.)

14. L’intégrale suivante a-t-elle un sens? Si oui, la calculer.

+00 1
/ n(z) dz.
0 1—a2

(Suggestion : transformer In(z) en une intégrale : 21n(z) = f0+°°($2/(1 +22y)—1/(14+y))dy ; permuter alors les intégrales.)
, . 1 1 . +oo 2
En deduire la valeur de [j In(z)/(1 —z)dz et de [ In(z)/(1+4x)dz, puis la valeur de " 1/m
oo m 2
et de Y 7 (=1)™/m”.
(Suggestions : Garnir, Fonctions de variables réelles II, pp 257-259.)

3.2 Résolution des exercices de la “liste type 2002/2003”

Exercice 1
e La fonction (x,y) — fi(z,y) = \/ﬁ est définie et dérivable sur
A={(z,y) eR*:1— (2> +y*) > 0} = {(z,y) e R* : 2* + y* < 1}
qui est I'ensemble des points intérieurs au cercle centré a lorigine et de rayon 1 (bord exclu).
e La fonction (z,y) — fa(z,y) = In(x — y) est définie et dérivable sur A = {(z,y) € R? : 2 — y > 0} qui

est Pensemble hachuré ci-dessous (bord exclu).

vy Y77

10

SHH

e La fonction (x,y) — f3(x,y) = In(Jz| — |y|) est définie sur

[y

A={(z,y) €R®: |z = [y| > 0} = {(z,y) € R*: |z] > |y[}.
L’analyse de cette condition donne

—r<y<zxsiz>0

y|<|x|<:>x|<y<|$|<:>{ r<y<-zsiz<0 ;

A est donc Pensemble hachuré ci-dessous (bords exclus).
y=-z y
11

y=zx
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Pour déterminer le domaine de dérivabilité, il faut tenir compte du fait que la fonction x — |z| n’est pas
dérivable en zéro et que la fonction X — In(X) est dérivable sur ]0,4+o00|. Ainsi f3 est dérivable sur
{(w,y) eR®:fa| =yl > 0, £ 0 et y#0} = {(z,y) €R*: |a[ —[y| >0, y # 0}
e La fonction (z,y) — fi(z,y) = eV**T¥” est définie sur R?; elle est dérivable sur
A={(z,y) eR*:2” +¢> >0} =R*\ {(0,0)}
e La fonction (z,y) — f5(z,y) = arcos(z? + y?) est définie sur A = {(z,y) € R? : =1 < 22 +y* < 1} et
dérivable sur B = {(z,y) € R? : =1 < 2% + y? < 1}. Comme 2 + y> > 0 Vo,y € R, on a
A={(z,y) eR?*:2? +¢y* <1} et B={(x,y) eR?: 2? + ¢y < 1}.

L’ensemble A est ’ensemble des points situés a l'intérieur du cercle centré a 'origine et de rayon 1, le
bord étant compris ; pour 'ensemble B, le bord est donc exclu.

e La fonction(z,y) — fs(z,y) = arctan(z/y) est définie et dérivable sur A = {(z,y) € R? : y # 0},
ensemble des points du plan dont on exclut ceux de I'axe des abscisses.
Calculons les dérivées partielles d’ordre 1 et 2 de fg par rapport a x puis par rapport a y. On a

1 1 y 2 72xy
D —_—_— —_ = N D = T o . oo
«fo(z,y) T /o) T Rt »fe(x,y) (0% + 22)?
1 —x —x 2 2xy
Dy fo(x,y) = TTeaE ()= g D; fo(x,y) = T
Des lors,
—2xy + 22y
D? D? =97 I _
sz(x7y) + ny(l'7y) (y2 + $2)2
Enfin,
—z —y? — 2% + 222 z? — y?
DmDyf6(=T7y) =D, y? + 22 - (y2 + 22)2 - (y2 + C[;2)2'

Exercice 2
e L’ensemble d’intégration est I'ensemble A = {(z,y) € R? 1y € [0,1],z € [y — 1,1 — y]}; il se représente
de la fagon suivante

y=-c+1

Si f est intégrable sur A, on a

fadedy= [ ([ fey)de) a.
A 0 y—1

Comme on peut aussi décrire cet ensemble par

A={(v,y) €R*:2€[-1,0,,y € [0,z + 1]} U{(z,y) €R*: 2 €[0,1],y € [0, —z + 1]},
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si on permute 'ordre d’intégration, on a

J[ tewaay = [ 01 (f " ) w) et [ 1 (/ ey i)

e L’ensemble d’intégration est I'ensemble A = {(z,y) € R? : x € [0,1],y € [0, —2x + 2]} ; il se représente

de la facon suivante
y=—2x+2
\‘ §
2

Si f est intégrable sur A, on a

J[ ramizas = | 1 ( / e dy) dr.

Comme on peut aussi décrire cet ensemble par A = {(x,y) € R? : y € [0,2],z € [0,1 — y/2]}, si on
permute 'ordre d’intégration, on a

//Af(ﬂc,y)dfvdy=/O2 (/Ol_y/zf(x,y)dx> dy.

e L’ensemble d’intégration est 'ensemble A = {(z,y) € R? : @ € [1,+00[,y € [z+1, +oo[}; il se représente
de la facon suivante
Y A

31 y=z+1

A1
/*112X

1‘* ;[;:1

Si f est intégrable sur A, on a

fadedy= [ ([ fay)dy) da.
A 1 z+1

Comme on peut aussi décrire cet ensemble par A = {(z,y) € R? : y € [2,4+00],2 € [,y — 1]}, si on
permute 'ordre d’intégration, on a

fapdedy= [ ([ faydr) dn
A 2 1
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Exercice 3
L’ensemble d’intégration est I’ensemble borné, fermé A = {(x,y) € R? : y € [0, ¥/7],z € [y?, V72]}; il se
représente de la fagon suivante

4

Comme la fonction f : (x,y) — sin(vVa3) y est continue, elle y est intégrable et on a

//A flz,y)dedy = /0% (/?ﬂwsin(\/x?) dm> dy.

Pour faciliter les calculs, permutons 'ordre d’intégration.
Puisque A peut aussi étre décrit par A = {(z,y) € R? : x € [0, V72],y € [0,/7]}, on a

//A flz,y)dedy /0\3/7? (/Oﬁsin(\/;”) dy> dx

Vel
Vz sin(Va3) dz

0
v, |
/ = D(Va) sin(Va?) de
i Y

[—gcos(\/zﬁ)}

0

- 2 cos(m) + gcos(O) = %

3 3

Exercice 4
Considérons la représentation de ’ensemble A ci-dessous.

L’ensemble A est un ensemble borné, fermé décrit par A = {(z,y) € R? : x € [0,2],y € [22,4]} et la
fonction (z,y) — f(z,y) = x est continue sur A, donc intégrable sur A. Deés lors,

//Af(x,y)dasdy _ /O2 (/2433@) da
y=4

_ /02 [xyL_% da

/0 2(495 — 22%)dx

22372 16 8
= (222 -2 | =8-——=_,
S SR
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Exercice 5
Soit la représentation de I’ensemble A ci-dessous.

L’ensemble A est un ensemble borné, fermé décrit par A = {(z,y) € R? : & € [r/2,37/2],y € [cos(z),0]}
et la fonction (z,y) — f(x,y) = 2y est continue sur A, donc intégrable sur A. On a donc

37/2 0
// f(z,y)dady = / (/ 2ydy> dx
A /2 cos(x)
3m/2 0
/ [gf} dz
™/2 cos(z)

1 371'/2
= —5/ (1 + cos(2z)) dx

/2
1 1 3m/2
= -z {x+sin(2x)]
2 2 o
= —Lar24sinGn)/2) + L2 sinmy = - T2 T
= 5 T S T 27r sin(m 1 1 5"

Exercice 6
L’ensemble d’intégration est I’ensemble borné, fermé A = {(z,y) € R? : z € [0,1],y € [0,2 — 2]} et la
fonction (z,y) — f(z,y) = x + y est continue, donc intégrable sur A. Ainsi,

//A(x+y)dxdy ( z+y) dy) dz

oy + } i
(Qx—x +2 -2z + 22) dz
(

Exercice 7

L’ensemble d’intégration est I’ensemble borné, fermé A = {(x,y) € R? : = € [0,V/2],y € [z,V4 — 22|}
et la fonction (z,y) — f(z,y) = /22 + y? est continue, donc intégrable sur A. Si on travaille en coor-
données polaires, cet ensemble, privé de V'origine, est décrit par A’ = {(r,0) €]0,2] x [x/4,7/2]}; dans
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ces conditions, on a f(z,y) = f(rcos(#),rsin(f)) = \/7"2 cos2(0) + r2sin®(0) = V72 = r. Il en résulte que

//A\/mdxdy = /2</mr d0> dr
= /rdr/ 1d6

T 8 w 2T
= |—| X—-—"==X—=—.
30 4 3 4 3
Exercice 8

L’ensemble d’intégration est 'ensemble borné, fermé A = {(z,y) € R? : z € [0,2],y € [2%,4]} et la

x

fonction (z,y) — f(x,y) = T est continue, donc intégrable surA. L’ensemble A peut aussi étre
y
déerit sous la forme A = {(x,y) € R* : y € [0,4],z € [0, /y]}. Ainsi,

// Y dxd /4 /ﬁ )
—dxdy = —=dzx | dy
AN+ o \Jo 1442

_ /4 2 ]
o [2v1+y?]

dx
4
N /o 2\/1+y

1
= = D(l +9?). ———=dx

1
4
Exercice 9 )
La fonction f : (z,y) — xe™® /(2* 4+ y) est continue sur {(z,y) € R?: 22 +y # 0} donc sur son ensemble
d’intégration A, ensemble non borné dont la représentation graphique est la partie hachurée du plan
ci-dessous. L Y

y =2’

Etudions I'intégabilité de f sur A sachant que \f(x y)| = flz,y) V(z,y) € A.

Pour z fixé dans ]0, +oo], la fonction g : y — ze™
est donc intégrable sur cet ensemble et on a

/ (z? + y) est continue sur le fermé borné [0, z?]. Elle

2 2 IQ

/ x;f dy = {xe””2 In(z? + y)] =ze ™ (In(22?) — In(z?)) = ze® In(2).
0 T4+ y 0

Etudions lintégrabilité de la fonction h : 2 — ze~*" In(2) continue sur [0, +o0c|. Comme h est continu sur
[0,¢] ¥t >0, on a

/Ot ze ™ In(2) dx = _ln;2) /Ot —2ze™™ dz = _In@) {e‘le = —M(e_t2 —1).
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Des lors,

lim e " =
t——+o0 2 2 2 t—+oo 2

lim (111(2)(6752 _ 1)) _ In(2) In(2) 2 In(2)

puisque . liin et =0 par application du théoréme de la limite des fonctions composées.
— 00

Comme cette limite est finie, h est intégrable en +oo donc sur [0, +00].

Ainsi, f est intégrable sur A et comme la fonction f est positive sur A, on obtient
too [ pat po—a? In(2
/ / x; dy | dx = n( )
0 0 xe + Yy 2
Exercice 10

La fonction f : (z,y) — f(z,y) = e~ @ +¥") est une fonction & variables séparées et 'ensemble d’intégration
A se présente aussi sous la forme d’un produit cartésien d’intervalles :

f(@,y) = g1(2).g2(y) @€ [0,400], y€ 0,400, g1=go:trre ",

Le calcul de I'intégrale de cette fonction sur A est traité dans les notes de cours et effectué au cours.

3.3 Solutions des exercices de la “liste type 2003/2004”

Exercice 1

dom f = {(x,y) € R? : 4— 22 —y? > 0}, ensemble des points du plan intérieurs au cercle centré a 'origine
et de rayon 2 (“bord” exclu).

dom g = {(z,y) € R? : |z| + |y| — 1 > 0}, ensemble des points du plan extérieurs au carré ayant pour
sommets les points de coordonnées (1,0), (0,1),(—1,0) et (0,—1) (“bords” exclus).

Exercice 2

Domaine de définition et de dérivabilité = R?\ {(0,0)}, ensemble de tous les points du plan excepté
Porigine.

—2xy

Dy f(z,y) = Dyf(z,y) = [l
Domaine de définition et de dérivabilité = {(z,y) € R? : 22 + y*/4 — 1 > 0}, ensemble des points
du plan extérieurs a ’ellipse centrée a l'origine et dont les sommets sont les points de coordonnées

(1,0),(0,2),(—1,0) et (0,—2) (“bord” exclu).

2x Y
S D - .
x4+ y?/4—1 vf(@,y) 2(x24+y%2/4-1)

Dy f(z,y) =

Exercice 3

Fonction indéfiniment contintiment dérivable sur R*\ {(0,0)}; D2 f(x,y) + D f(x,y) = 0.

Exercice 4
Fonctions dérivables sur R?; D,.f(r,0)Dgg(r,0) — Do f(r,0)D,.g(r,0) = 7.

Exercice 5

Les ensembles d’intégration sont les parties hachurées du plan.

a) fy (fo,_y [(@,y)dw)dy
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y = z+1

2
1
X
2 1 ) ]
PP e 2, (-

b) fo (ffl f(x,y)dy)dx =+ f1 (f71 f(x,y)dy)d:v

tyYy

1
1 1 2 'X—

y=1—=x

Exercice 6
a) f est continu sur I’ensemble fermé borné A donc intégrable; I'intégrale vaut 37/8 4 /2/4.

b) f est continu sur ’ensemble fermé borné A donc intégrable ; intégrale vaut 1/12.

Exercice 7

A est 'ensemble hachuré.
a) f est continu sur ’ensemble fermé borné A donc intégrable ; U'intégrale vaut e/2 — 1.

% r=e

1

0 >
1 2 3 4 X

-1

b) f est continu sur I’ensemble fermé borné A donc intégrable ; I'intégrale vaut (e — 1)/2.

Y y==x

] >

! il 2

c)V(z,y) € A:|f(z,y)| = f(z,y). Pour x fixé dans [1, 2], la fonction y — ye™*¥ est intégrable sur [0, +oo[

car elle y est continue et hT (y* . ye~™¥) = 0. De plus, f0+oo ye~"dy = 1/2? et la fonction x — 1/22
y—+oo

est continue sur le fermé borné [1,2] donc intégrable. L’intégrale donnée vaut 1/2.
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Y r=1 x=2

X

‘ I 2!
d)V(z,y) € A:|f(z,y)| = f(x,y). Pour x fixé dans [1, +0c], la fonction y — e¥*" est continue sur le fermé

2 2
borné [1/z3,1/x?] donc intégrable et on a fll/x e¥* dy = (e — /) /22, La fonction = — (e — e'/®) /2>

/@3
1
est intégrable sur [1,4+o00[ car elle y est continue et lim (:c2 X — (e — el/”)) = e — 1. L’intégrale
T—+00 €T
donnée vaut 1.
Y4 1
Y=
3
2.5
2
1.5
1
0.5
X
-0.5

Exercice 8

a) L’ensemble d’intégration A est ’ensemble des points situés dans le quatrieme quadrant, intérieurs
au cercle centré a origine et de rayon 1. f est continu sur I'ensemble fermé borné A donc intégrable;
Pintégrale vaut m(1 —2/e)/2.

b) L’ensemble d’intégration A est I’ensemble des points du premier quadrant situés entre le cercle centré
au point de coordonnées (1/2,0) de rayon 1/2 et le cercle centré a l'origine de rayon 1. f est continu
sur 'ensemble fermé borné A donc intégrable; 'intégrale vaut 7/8; ce réel est la mesure de l'aire de la
surface A.

Suggestion d’exercices supplémentaires
Exercice 1

I’ensemble d’intégration A est I’ensemble des points du premier quadrant situés a l'intérieur du cercle
centré a lorigine et de rayon 1. Comme f est continu sur A, ensemble fermé borné, f y est intégrable;
I'intégrale vaut 7/16.

Exercice 2

La fonction est continue sur |0, +o00[ et on vérifie qu’elle est intégrable en 0 et +o00 en utilisant le critere
en 0 par exemple. L’intégrale vaut In(2).

Exercice 3

La fonction est continue sur 0, 1[ U |1, +o0] et on vérifie qu’elle est intégrable en 0, 1 et +oo. L’intégrale
vaut —m2/4. De plus, si

X = [ - ey = [my0 e oa 40T 2 ) W/ - )i
0 0

X-Y=X/2
1

1 +oo +o0
Comme /0 In(z)/(1 — 2%)dx = /1 In(z)/(1 — 2*)dx = 5/0 In(z)/(1 — 2%)dz = —7*/8, on obtient
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X =-71%/6etY = —n?/12.

+o0 foo
Enfin, Z 1/m? =7%/6 et Z(—l)m/m2 = —n%/12.
m=1 m=1

3.4 Solutions des exercices de la “liste type 2004/2005”

Exercice 1

— dom (f) = {(z,y) € R? : 22 —y®> + 9 > 0} : ensemble des points situés entre les branches de
I'hyperbole d’équation 2% — y? + 9 = 0 ayant pour sommets les points de coordonnées (0,3) et
(0, —3), les points de la courbe étant compris.

— dom (g) = {(z,y) € R? : |z +y| — 1 > 0} : ensemble des points situés a 'extérieur des droites
d’équation z +y =1 et x +y = —1, les points des droites étant exclus.

— dom (h) = {(z,y) € R?: |z +y| > 1} : méme ensemble de points que pour g mais les points des
droites sont inclus.

Exercice 2

— Pour f, les deux domaines sont égaux a R?\ {(0,0)}, ensemble des points du plan dont on exclut
lorigine. On a

€ Y
Dif(x,y) = 5~  Dyf@y)=—5—
f(x y) 22 1 42 yf(:Z: y) 22 + 42
2 2 2 2
2 _ Yy -z 2 _ -y _ _ 2y
Dx,f('ray) - (m2+y2)2 Dyf(I,y) - ($2+y2)2 Dnyf(xvy) _Dyle(Ivy) - (xg_’_yg)g'

— Pour g, dom (g9) = {(z,y) € R? : |z| < |y|} tandis que le domaine d’infinie dérivabilité est
{(z,y) € R? : |z| < |y|}. Le domaine de définition de g est 'ensemble des points situés entre les
droites d’équation x +y = 0 et © — y = 0 et comprenant notamment les points de coordonnées
(0,1) et (0,—1), les points des droites étant inclus mais non le point de coordonnées (0,0) ; pour
le domaine d’infinie dérivabilité, les points des droites sont exclus. On a

si xzy>0

0
2| Dzg(z,y) + |yl Dyg(x,y) = { /P22 si ay <0

— Pour h, les deux domaines sont égaux a {(z,y) € R?> : 22 + y + 1 > 0} : ensemble des points

extérieurs & la parabole d’équation y = —22 — 1, les points de la courbe étant exclus. On a
Dohlzy) = -2 Dyh(wy) =
T,Yy) = T,Yy) = .
s Tyt v = @y + 1)

Exercice 3

La fonction F est dérivable sur ]1/e,1[ et on a DF(t) = (D1f)(s,,) X 1/t = (D2f)(s1.5.) % €'

Exercice 4

1 —2y r=—-2 Yy
a) L’intégrale donnée est égale a / </ fz,y) dx) dy. 2 4
—1\J2
y=-3~ 11
X
—o| | 1] |]o ‘ ‘ 2 3
-1
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b) L’intégrale donnée est égale a /

xr=—1
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(/_O(y+4)/3 flz,y) dw) dy + /_01 (/_01 flay) dm) d

-1

—4

b Y
\ L
NN
1-2
-3
—4

\y -3z —4

¢) L’intégrale donnée est égale a

ﬁ z
/0 f(z,y) dy) dx +

L

f(z,y) dy) dx.

Exercice 5

Si A est Pensemble hachuré alors [, f(x,y) dz dy = 8/9.

ds Yt dy dy
Rl
22 1 1 2 'X
Exercice 6
Lintégrale vaut ¢ — €
dgrale vaut — — = — —.
intégrale vaut — 5~ 1
Exercice 7
1 2 4 . 1
a) L'intégrale vaut - — — + — b) L’intégrale vaut —.
2 7T 72 3

Exercice 8

a) A={(z,y) eR?: 2 €

[-1,1],y € [-1+ 22, —2? + 1] et I'intégrale vaut 0.
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2 1 2
b) A= {(amy) €ER*:z € {0,77\/?:/3} Y € [07{,6]} et 'intégrale vaut % - §sin (g)

Exercice 9

a) L’intégrale vaut In(2)/2 et Pensemble d’intégration est ’ensemble
hachuré.

y=—x
b) L’ensemble d’intégration est le méme que ci-dessus et l'intégrale vaut In(2)/7/2.
c) v Y L’intégrale vaut m/2 et 'ensemble d’intégration est ’ensemble hachuré.
12 y=2
y=1
H—H X
-2 /101 2 3
1-2
+-3
d) L’intégrale vaut 21n(2) —2 et 'ensemble d’intégration est ’ensemble hachuré.
4}Y r=1
3 y=a?
2
1
) —}\\//(J Ty
-1
r=-—1

Exercice 10

L’intégrale vaut 47 /3.

Exercice 11

L’intégrale vaut 337/2.

Exercice 12

L’ensemble d’intégration est le premier quadrant du cercle trigonométrique et U'intégrale vaut 7/16.

Exercice 14

L’intégrale vaut In(2).

Exercice 15

/+oo ln(x)2 i — _12 /1 In(z) dp — _12 /1 In(x) do — _12
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Chapitre 4

Approximations polynomiales

4.1 Exercices de base sur le chapitre 3 (partim B)
Dans cette section figurent quelques exercices de base (dont il a été question durant les années
académiques mentionnées).

Dans tout ce qui suit, sauf mention du contraire, z est I'inconnue réelle.

Liste 2002/2003

1. Déterminer l'approximation polynomiale & 'ordre n au point xy pour chacune des fonctions
données ci-dessous.

f(z) = xsin(x),n = 3,29 =0, fl@)=+V14+z,n=2,20 =0, fl@)y=In(z+1),n=3,20 =0
f(z) =In(z),n =2,29 = 2

2. Estimer le reste de 'approximation polynomiale a 'ordre 2 et & l'ordre 3 en 0 de la fonction
f(z) =sin(z), = € R.

3. a) Déterminer la forme trigonométrique des complexes suivants :

1
i, 1414, -.
2

b) Déterminer les racines quatriemes du complexe —1. Représenter ces racines.

Liste 2003,/2004

1. Déterminer 'approximation polynomiale de f & ’ordre n au point zy dans chacun des cas suivants.

= =4 fa(z) = tan(x), xg =m,n=4
f3(x) = tan(x), o = §,n =3 falx) =v2x+1, zg=0,n=2

fs(x) =In(1 — 2?%), 20 =0,n =2 fo(x) = x arcos(x), 9 =0,n =2

2. Estimer le reste de 'approximation polynomiale a ’ordre 2 en 0 de la fonction cos. Représenter la
fonction et cette approximation dans le méme repere orthonormé.

3. Montrer que le reste de I'approximation polynomiale a ’ordre n en 0 de la fonction cos converge
vers 0 si n — +o0o. En déduire le développement de cos en série de puissances de .

4. Déterminer les racines cubiques du complexe —2 et en donner la représentation géométrique.

5. Déterminer les racines cubiques du complexe 1+ et du complexe —¢. En donner une représentation
géométrique.
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CHAPITRE 4. APPROXIMATIONS POLYNOMIALES

ste 2004/2005

1. Dans chacun des cas suivants, déterminer I'approximation polynomiale a ’ordre n en xy pour la
fonction donnée explicitement.

filz) =e 2 20=0,n=0,1,2,3 fo(z) =2 2% 29 =0,n=0,1,2,3
fa(x) =1/(1+2%), 20 =0,n=0,1,2 fa(x) = arctan(z), zog =0,n=0,1,2,3
f5(x) =In(x), ©o =1,n=0,1,2,3 fe(x) = (1+2)3, 20=0,n=0,1,2,3,4

Représenter f3 et son approximation a ’ordre 2 en 0.

2. Estimer le reste de 'approximation polynomiale & ’ordre 4 en 0 de la fonction sin. Représenter la
fonction et cette approximation dans le méme repere orthonormé.

3. Déterminer 'approximation polynomiale a I’ordre 0, 1,2, 3 en 0 des fonctions données explicitement

par!
r+1 -3z +2
=1 -z
gl(x) n(l—l‘)’ 92($) 21‘2—3.’13‘+1

4. Déterminer les racines cubiques du complexe ¢ et en donner la représentation géométrique.

5. Déterminer les racines quatriemes du complexe —16. En donner une représentation géométrique.
Déterminer les racines carrées et les racines quatriémes du complexe (iv/3 — 1)/2. En donner la
représentation géométrique.

6. Un tunnel d’une longueur [ relie deux points de la surface de la Terre. Si R désigne le rayon de la
Terre, déterminer une approximation de la profondeur maximale de ce tunnel.

7. L’approximation a ’ordre 3 d’une fonction en un point est toujours
O un polynome de degré 3

O une fraction rationnelle dont le degré du numérateur est strictement inférieur & celui du dénominateur

O un nombre réel plus petit ou égal a 3
O une fonction
O aucune des propositions précédentes n’est correcte.

4.2 Résolution des exercices de la “liste type 2002/2003”

Exercice 1

— La fonction z — f(z) = zsin(z) est indéfiniment continiment dérivable sur R et on a
Df(z) = sin(x) 4+ z cos(x), D?f(z) = 2cos(x) — xsin(x), D?f(z) = —3sin(x) — x cos(x)

sur R, donc
f(0)=0, Df(0)=0, D?f(0)=2, D’f(0)=0.
Des lors, 'approximation demandée est le polynome
z? 3
Py(x) = f(0) + = Df(0) + 7 D*f(0) + % D*f(0) = 2.

— La fonction x — f(x) = /1 + z est indéfiniment continiiment dérivable sur | — 1, 4o00[ et on a

Df() = 5(1+2) 5, Dfa)=—;(+a)
sur | — 1, 400, done
FO)=1, DjO) =5, D)=

Des lors, 'approximation demandée est le polynome

2

1‘2 x
Py(x) = f(0) += Df(0) + 7 D2f(0) =1+ R

1. Suggestion. Utiliser le développement de In(1 + z) et In(1 — z) pour g1 et décomposer en fractions simples pour gs.
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— La fonction x — f(z) = In(z + 1) est indéfiniment contintiment dérivable sur | — 1, +oo[ et on a
Df(z)=(x+1)7" D*f(x) = —(x+1)"% D*f(z) =2(x+ 1)
sur | — 1,400}, donc
f(0)=0, Df(0)=1, D?*f(0)=—1, D3f(0)=2.

Deés lors, 'approximation demandée est le polynéme

2 23

2 3
Py(x) = f(0) + = Df(0) + % D2f(0) + % Df(0) =2 — % + .

— La fonction z — f(z) = In(z) est indéfiniment contintiment dérivable sur ]0, +oo[ et on a
Df(x) =271, D?*f(x)=—a2

sur ]0, +ool, donc
1

f2)=m(), DI@)=3, D=7

Deés lors, approximation demandée est le polynéme

@ D?f(2) = 1n(2)—|—x_2— (z—2)°

Py(w —2) = f(2) + (z —2) Df(2) + 2 8

Exercice 2

La fonction x — f(x) = sin(z) étant réelle et indéfiniment contintiment dérivable sur R, vu le développement
limité de Taylor, on sait que le reste de ’approximation polynomiale & Pordre 2 est Ry(z) = 22 D3 f(ug) /6,
r € R et ug strictement compris entre 0 et x. Puisque Df(z) = cos(z), D?f(z) = —sin(z) et
D3f(x) = —cos(x), on a
23 2
Ry(x) = —= cos(ug) et |Ro(x)] < 5 L€ R.

De méme, le reste de approximation & ordre 3 est Rz(z) = x* D*f(ug)/24 = 2* sin(up)/24, = € R et
up strictement compris entre 0 et  puisque D*f(z) = sin(x). Mais comme I’approximation de la fonction
sinus & l'ordre 4 est la méme que 'approximation a ’ordre 3, en utilisant le développement de Taylor, on

obtient
5 5 |z|?

x x
Rs3(x) = Ry(x) = mD5f(u0) =195 cos(up) et |R3(x)| < 120" © €R.

Exercice 3

a) Forme trigonométrique d’un nombre complexe

— La forme trigonométrique de i est e?™/2 car i = 0+ . 1 et donc = v/02 + 12 = 1. De plus, comme
cos(f) =0 et sin(f) = 1 avec 6 € [0,27[, on a 6 = /2.

— Considérons z = 1+i;o0n a |z| = V12+12 = V2 et, des lors, z = \@(\/5/2 +1 \@/2) Ainsi,
cos(f) = sin(f) = /2/2 avec 6 € [0,27], ce qui donne # = 7/4. Pour conclure, la forme trigo-
nométrique de 1+ i est donc v/2 e? /4.

— Le complexe 1/i = —i s’écrit sous forme trigonométrique e
1, cos(f) = 0 et sin(f) = —1 avec 6 € [0, 2.

b) La forme trigonométrique de —1 est e’ ™. Ainsi, ses racines quatriémes sont données par zj, = e
avec k =0,1,2,3. Des lors, on a

137/2 puisque r = /02 + (—1)2 =

i (m+2km)/4

20 = ez7r/4’ 2 = e7.37r/4’ 29 = 6157r/4 et 23 = 6177r/4.

Ces racines quatriemes se représentent sur le cercle centré a l’origine de rayon 1 et sont les sommets d’un
carré, points communs au cercle et aux droites d’équation y =z et y = —z.
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Y

21 20

z9 z3

4.3 Solutions des exercices de la “liste type 2003/2004”

Exercice 1
f12P4(1‘)—LL’ 4/2 x €R.

fo:Piz—m)=x—m+ (x—m)3/3, x €|r/2,3n/2[

fa:Ps(x —m/4) =1+4+2(x —7/4) + 2(x — w/4)? + 8(x — 7 /4)3/3, x € | — n/2,m/2].
fa: Py(x) = 1+m—:c2/2 z€]—1/2,+00[.

fs:Py(z)=—2% x€]—1,1].

fo: Po(z) = x/Q—m zxe]—1,1].

Exercice 2

Ra(z) = 23 sin(u) /6 avec u strictement compris entre 0 et x; on a donc |Ra(z)| < 23/6, = € R.

4Y
y = cos(z)

Exercice 3

+oo . 22k
cos(x) = kZ:O(—l) on!

Exercice 4

20 = V2 e™/3, 2 =1/2¢€", 29 = /2 €'57/3,
Représentation : sommets du triangle équilatéral inscrit dans le cercle centré a I'origine et de rayon /2.
Un des sommets appartient & I’axe des X, son abscisse étant négative.
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Exercice 5

Pour 1 +1i: 29 = /2 ! ™/12, 2 = V2 €3/ 29 = /2 e 177/12,

Représentation : sommets du triangle équilatéral inscrit dans le cercle centré a I'origine et de rayon v/2.
Un des sommets appartient a la deuxieme bissectrice et est situe dans le second quadrant.

Pour —i : zg = ' ™/2, 21 = et /6, 2y = e 117/6,

Représentation : sommets du triangle équilatéral inscrit dans le cercle centré a l’origine et de rayon 1. Un
des sommets appartient a I’axe des Y, son ordonnée étant positive.

4.4 Solutions des exercices de la “liste type 2004/2005”

Exercice 1

Po(l'—xo) Pl(x—l'o) PQ(.%‘—ZL'()) Pg(.’L‘—ZL’o) P4(fE—£L’0)
4 .
fi 1 1—2x 1— 2z + 222 1—2x+2$2—§x‘3,x€R
fo 0 x x — 222 z—222+223, 2 €R
I3 1 1 1-22,z€R
3

fa 0 x T :L’f%,.TER

(z—1) (z=1)% | (2—1)°
fs 0 x—1 x—l—T r—1— S5 4 S5 1 €]0, +o0]
fs 1 14 3x 14 3z + 322 1+ 3z + 322 + 23 14+3z+322+2%,2€R

Exercice 2

Ry(x) = cos(up)x® /5! avec ug strictement compris entre 0 et .
Approximation : Py(x) = 2 — 2°/6,2 € R.
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Y
4

6

4

y=x—2°/6
-6
° 5 4. 3 2 : —6
Ry(x) = ﬁ(uo cos(ug) — 5 ug sin(ug) — 20 ug cos(ug) + 60 ug sin(ug) + 120 ug cos(ug) — 120 sin(ug)) . ug
avec ug strictement compris entre 0 et x.
Approximation : Py(x) = 1 — 2%/6 + 2*/120,2 € R.
v Y
0.5\ y=1-22/6+a"/120
3 2 -1 1 2 3 X
0.5 y = sin(z)/x
_l L
Exercice 3
Iﬁ(x) }ﬁ(I) EB(I) f%(I)
a1 0 2z 2x 2z +22%/3,x € | — 1,1]

g2 2 243z | 2+ 37+ 522 | 2+ 3z + 522 + 923, 2 € R\ {1/2,1}

Exercice 4

Les racines cubiques de i sont zy = e™/6 2z, = ¢!57/6, i37/2  Ce sont les sommets du triangle

équilatéral inscrit dans le cercle trigonométrique dont le sommet correspondant a z5 est le point de coor-
données (0,—1).

Z9 = €

Exercice 5

Les racines quatriemes de —16 sont zgp = 26”/4,21 = 2ei3”/4722 = 26i5”/4,23 = 2¢!77/4 Ce sont les
sommets du carré inscrit dans le cercle centré a l'origine et de rayon 2, zy correspondant au point de
coordonnées (v/2,1/2).

Les racines carrées de (iv/3—1)/2 sont zy = €™/, z; = €**™/3. Ce sont les points diamétralement opposés
du cercle trigonométrique dont 1'un a pour coordonnées (1/2,/3/2).

Les racines quatriemes de (iv/3 — 1)/2 sont zg = €'™/6, 2) = €'27/3 25 = €!77/6 25 = €157/3, Ce sont
les sommets du carré inscrit dans le cercle trigonométrique, zy correspondant au point de coordonnées

(v3/2,1/2).

im/3

Exercice 6
I?/8R

Exercice 7

une fonction.
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Chapitre 5

Listes d’exercices 2025 - 2026 :
correction (Math1009)

LiSTE 1 : RAPPELS ET CALCUL MATRICIEL

I. Nombres complexes et résolution d’équations‘

1. Déterminer les partie réelle, imaginaire, le conjugué et le module de chacun des
complexes ci-dessous.

it+1 - (i +2)°
=7 z9 = cos(2) + isin(2), =

z | Rz Sz z El

z1 |0 -1 1 1

zo | cos(2) | sin(2) | cos(2) —isin(2) | 1
23 | 2/5 11/5 | (2—11i)/5 NG

2. Résoudre les équations suivantes

(1) 224+9=0 (2) 2 =1 (3) 224+ 2z+1=0.

Ona (1)S={-3i, 3i} (2) S ={1,(-14+1iv3)/2, (—1 —i+/3)/2}
(3) S={(-1+iVv3)/2, (-1-iV3)/2}

’II. Opérations entre matrices‘

1. Soient les matrices A, B, C données par

2 i 2 0 ‘
E:(Hz‘ 1 ) Bz(l 4 ) C:< 32 1/(?;1))
3/i  (2—1i)? i -2 —2i i/

Si possible, effectuer les opérations suivantes (et simplifier la réponse au maximum).
Si cela ne I’est pas, en expliquer la raison.

1) A+ B, 2) A+ B, 3) A.B, 4) AB+C, 5) B.A, 6) C.A, 7) A*.C, 8)i.C, 9) (i.A)*.
1) A+ B est impossible & calculer car les matrices n’ont pas le méme format.
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S (4 240 -2 [ 8+i  4+10i
2)A+B<i 3 1—42’) 3)A'B<3+5i —10+8i>
4 242 —6i

5)B A=\ 2+4i —-3+4+7¢ 12-19;

11+ 9+ 197)/2
4)A.B+C:< ( )/ )
0 1+4i —3+8i

3430 (—20+17i)/2

6) CA est impossible & calculer car le nombre de colonnes (2) de C n’est pas égal au nombre de
lignes (3) de A.

4 _ 3/2__1 3 (1+1i)/2
A C=1] 3—i —3i/2 8) iC = 9 _1/2
8+3i (—1+46d)/2
—2i -1
9) lA)*=| —-1—1 i
3 4—3i
1 00
. Soit A une matrice carrée de dimension 3 telle que A;; =1, Vi,j et B = 01 0
0 0 0
Calculer C = AB — BA et en déduire la forme de C + C.
0 0 -1 _
OnaC=1[ 0 0 —1 | et C+ C estla matrice nulle de dimension 3.
11 0
. 2 -1 9
. On donne la matrice A = 3 0 ) Montrer que A —2A+3 1=0.

. Déterminer la forme générale des matrices qui commutent avec

a)A:( é) b)B:(S (b))(a,beC)

La forme générale des matrices qui commutent avec A est du type ( 2ab 2 ) (a,b € C).

N O

La forme générale des matrices qui commutent avec B est du type ( g g > (a,p€C)sia#b.

Si a = b alors toute matrice de dimension 2 commute avec B car B est dans ce cas un multiple de
la matrice identité.
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LISTE 2 : CALCUL MATRICIEL (2)

I. Déterminants ‘

1. Calculer le plus rapidement possible le déterminant de chacune des matrices suivantes.

Lo ) -3 1 6
1/ 2—-4 30 1 —24
a5 Jo =iy o) o= 0 2 s |,
3\ -1 4 (1+1) 5 3 1 —6
1 1 3 -3 1 sin®(a) cos?(a)
D=5| 3 -3 1 |, E=|1 sin?(b) cos?(b) | (a,b,c€R).
-3 1 3 1 sin®(c) cos?(c)

Le déterminant de A vaut (8 —7)/9, celui de B vaut 1, celui de C' vaut 90, celui de D vaut —7/2
et celui de E est nul.

2. Le déterminant de chacune des matrices suivantes est un polynéme en z € C. Factoriser
ce polynéme en un produit de facteurs du premier degré.

0z 00 0

T 0 3 z x 1 1 1

A:(_zx xfﬁ),B:(‘ff),C: 0 z41 = |, D=]01 2 1 1
1 0 z-2 01 1 2 1

01 1 1

Le déterminant de A est égal & (z + 1)%; celui de B est égal &
(z + 2i)(x — 2i), celui de C vaut (z + 1)%(z — 3) et celui de D vaut —a?(x + 2)(z — 1)2.

‘II. Inversion de matrices ‘

Calculer (si elle existe) la matrice inverse de chacune des matrices suivantes (on donne

a €R). .
(%) me () e (e e

-1 0 -1 -1 0 —

1 0
e La matrice B ne possede pas d’inverse car son déterminant est nul.
e La matrice inverse de C' est égale a son inverse.
. -1 -1 -1
141
+ ) ) 1
2

e La matrice inverse de 4 est A7 = ( -2 1 )

e La matrice inverse de D est D1 =

1
e La matrice inverse de F est E~1 = = i -1 1
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LISTE 3 : CALCUL MATRICIEL (3)

I. Diagonalisation ‘

1. Déterminer les valeurs propres des matrices suivantes et en donner la multiplicité.

- 2 1 10 1 3 0
A<’. .’), B=|03 5|, c=|3 -2 -1
vt 00 2 0 -1 1

Les valeurs propres de la matrice A sont —1+4 et 144 ; ces valeurs propres sont simples (c’est-a-
dire de multiplicité 1).

Les valeurs propres de la matrice B sont 2 (valeur propre double) et 3 (valeur propre simple).
Les valeurs propres de la matrice C sont —4, 1 et 3; ces valeurs propres sont simples.

2. Rechercher les valeurs propres et les vecteurs propres des matrices suivantes. Ces
matrices sont-elles diagonalisables? Pourquoi? Si elles le sont, en déterminer une
forme diagonale A, ainsi qu’une matrice inversible S qui y conduit.

5 3 -10 0 -1.0 0 1 3 0
A<4 1), B=| 11 0|, c=[ 11 0|, D=3 -2 -1
—2 0 -1 0 -1 0 -1 1

Calculer les produits AS et SA. Comparer les matrices obtenues. N’aurait-on pas pu
prévoir ce resultat sans effectuer les calculs 7 Pourquoi ?

e Matrice A : 2 valeurs propres simples : —2 et 5; la matrice est donc diagonalisable.

Les vecteurs propres relatifs a la valeur propre —2 sont du type ¢ _3 4 ) c € Cy et ceux relatifs

a la valeur propre 5 sont du type ¢’ 1 , ¢ € Cy.

0 —4 1
—6 5
8 5
onaA=S5"145 & SA = AS en multipliant les deux membres & gauche par S.

Ona,parexemple,A:S—lAS:<_2 g)avecS:< 3 1)'

Des lors, en effectuant les produits, on a AS = SA = ( > Comme A est diagonalisable,

e Matrice B : 2 valeurs propres, I'une simple 1 et 'autre double —1.

Les vecteurs propres relatifs a la valeur propre double —1 sont du type ¢ , ¢ € Cy. Comme

_ o O

cette valeur propre n’engendre pas 2 vecteurs propres linéairement indépendants, la matrice n’est
pas diagonalisable.

0
Les vecteurs propres relatifs & la valeur propre simple 1 sont du typec | 1 |, ¢ € Cy.
0
e Matrice C : 2 valeurs propres, 'une simple 1 et 'autre double —1.
-2 0
Les vecteurs propres relatifs a la valeur propre double —1 sont du type ¢y 1 e | 0 |, c1,e0 €
0 1

C non simultanément nuls. Cette matrice est donc diagonalisable car elle possede 3 vecteurs propres
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linéairement indépendants.

-1 0 0 -2
On a, par exemple, A = S71CS = 0 -1 0 | avec S = 1

0
Les vecteurs propres relatifs a la valeur propre simple 1 sont du type ¢ ( 1 ], ceCyg.
0
0
0
0o 0 1 0 1

0
1
0

e Matrice D : 3 valeurs propres simple : —4, 1 et 3; la matrice est donc diagonalisable.

-3
Les vecteurs propres relatifs a la valeur propre —4 sont du type c 5 , ¢ € Cq; les vecteurs
1
1
propres relatifs a la valeur propre 1 sont du type ca [ 0 |, c2 € Cy et les vecteurs propres relatifs
3
3
a la valeur propre 3 sont du type c3 2 , c3 € Cy.
-1
-4 0 0 -3 1 3
On a, par exemple, A = 0 1 0 | avec S = 5 0 2
0 0 3 1 3 -1

3. Une matrice carrée A de dimension 2 posséde les deux valeurs propres 1 et -1, aux-
A .2 . 2 1
quelles peuvent étre associés respectivement les vecteurs propres 9 et .

-1
Que vaut A7

La matrice A est égale a < (i) (1) )

1. L’institut météorologique a fait les observations suivantes :
— on n’a jamais vu deux jours ensoleillés consécutifs,
— g’il fait beau un jour donné, on a une chance égale d’avoir de la pluie ou de la neige
le lendemain,
— 8’1l pleut ou s’il neige, on a une chance sur deux que le temps se maintienne le jour
suivant et une chance sur quatre qu’il fasse beau le lendemain.
Sachant cela,

(a) Représenter la matrice de transition de ce systéme.

(b) Sachant qu’il fait beau aujourd’hui, quel pourcentage de chance a-t-on qu’il fasse
beau dans deux jours ?

(c) A long terme, quelle sera I’évolution du climat ?

(a) Si on note Ny, Py et Sy respectivement un jour de neige, un jour de pluie et un jour de soleil
au départ et Ny, P; et S1 la météo correspondante le jour suivant, on a

N 1/2 1/4 1/2 N
po|= 14 12 12 P,
51 1/4 1/4 0 So

et la matrice de dimension 3 est la matrice de transition du systeme.
(b) Sachant qu’il fait beau aujourd’hui, on a 25 % de chance qu’il fasse beau dans 2 jours.
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0,4

(c) Le vecteur de probabilité de valeur propre 1 est égal & | 0,4 |. A long terme, on a 4 chances
0,2

sur 10 qu’il neige, 4 chances sur 10 qu’il pleuve et 2 chances sur 10 qu’il fasse ensoleillé.

. Dans un laboratoire, a chaque repas, des lapins ont le choix entre manger des carottes,

de la salade ou des pissenlits mais ne peuvent manger qu’un aliment d’une seule
catégorie lors d’un méme repas. Comme ils sont gourmands, ils ne manquent jamais
un repas.

L’observation montre que si un lapin a mangé des carottes a un repas, il en mangera
au repas suivant dans 70 % des cas; sinon, il mangera de la salade une fois sur 5 ou
des pissenlits 1 fois sur 10.

S’il a mangé de la salade, il en mangera encore 6 fois sur 10 au repas suivant ; sinon,
il mangera un des deux autres aliments de fagon équiprobable.

Enfin, s’il a mangé des pissenlits, au repas suivant il y a 1 chance sur 5 qu’il mange
des carottes et 2 chances sur 5 de la salade.

(a) Si un lapin vient de manger des carottes, quelle est la probabilité qu’il mange de
la salade dans deux repas ?

(b) A longue échéance, que mange ce lapin ?

(a) S’il vient de manger des carottes, le lapin a 30 % de chance de manger de la salade dans deux
repas.

(b) A longue échéance, le lapin a 40 % de chance de manger des carottes ou de la salade et 20%
de chance de manger des pissenlits.

. En algébre linéaire (ou géométrie analytique), une rotation du plan (d’angle 6) est

représentée par une matrice du type

= (S )

ol 6 est un réel (et représente la mesure de I’angle de la rotation).
— Pour tout 6, déterminer la matrice produit M7 et en simplifier les éléments au
maximum.

On a
2 cos(26) —sin(20)
My = ( sin(20)  cos(26) )

— Montrer que quels que soient 6,60’, les matrices My et My commutent. Qu’est-ce

que cela signifie en termes de rotations ?
On a

N /
My My = My My — ( cos(f+6) sin(6 4+ 0") >

sin(04+0")  cos(6 +6")

ce qui signifie que l'ordre dans lequel on effectue les rotations n’a pas d’importance.

— Montrer que quel que soit le réel 6, la matrice

Sy

est aussi une matrice qui représente une rotation.

On a
() o) = (ol sy ).
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C’est donc aussi une matrice de rotation mais la rotation s’effectue dans le sens inverse de la
rotation d’angle 6.

4. Vrai ou faux (Justifier)

(a)

1 0 0
Toute matrice carrée de dimension 3 commute avec 0 1 0
0 0 O

Faux : si on multiplie la matrice donnée notée A & gauche et a droite par une matrice quel-

a b c
conque notée B dutype | d e f | dont les élements sont des complexes quelconques, on
g h i

a, par exemple, que la troisieme ligne de AB est le vecteur nul alors que la troisieme ligne de
BA a pour premier élément g.

La matrice a=b a*—ab+?®
a2 _ b2 a?) _ b3

Faux car le déterminant de cette matrice vaut O sia =b ou si b = 0.

(a,b € C) est inversible.

Si une matrice carrée A de dimension 2 est de déterminant nul, alors I’une des
colonnes de A est multiple de ’autre.
Vrai (cf. théorie)

Si deux lignes d’une matrice carrée A de dimension 3 sont identiques, alors det A =
0.
Vrai (cf. théorie)

Si A est une matrice carrée de dimension 3, alors det(5A4) = 5det A.
Faux : det(5A4) = 53det A = 125det A

Si B est la matrice obtenue en multipliant la ligne 3 d’une matrice carrée A de
dimension 3 par 5, alors det B = 5det A.
Vrai (cf. théorie)
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LISTE 4 : FONCTIONS DE PLUSIEURS VARIABLES (1)

‘I. Définitions et représentations graphiques‘

1. Déterminer le domaine de définition des fonctions données explicitement ci-dessous

et le représenter.

2

flz,y)=In <y4 — 224+ 1) . g(zy) =2 —y, h(z,y) = arcos(xy).

Les domaines de définition sont les suivants :

e dom(f) = {(x,y) € R?: y?/4 — 2% + 1 > 0} ; sa représentation graphique est la région hachurée,
les points de I’hyperbole étant exclus de ’ensemble.

e dom(g) = {(x,y) € R? : 2z — y > 0}; sa représentation graphique est la région hachurée, les
points des droites sont compris dans ’ensemble.

e dom(h) = {(z,y) € R? : —1 < a2y < 1}; sa représentation graphique est la région hachurée, les
points des hyperboles sont compris dans I’ensemble.

+y ol —y?fi=1 LY 3:
(R | N /[l [ 2k
/ / y=—-1/z
\ s‘ ]_ <+ / /" 7\\ dom(h)
] dom(f) dom(g) | / N
/ _
- Lo
2 4\17{ 2 > 7§ 3 1 1 é
1 X -1 1 X - ; -
i — =) 7
// 2 \\ \74,
f \ — =
/ \ —
/ ab \ \:, !

2. Dans chacun des cas suivants, représenter les courbes de niveau d’équation f(z,y) =c
si
a) f(r,y) =4x —yetc= -2, 4
b) f(x7y) :$2—y2 et c= _17 07 1
C) f(x,y):xzfyetc:—Q, 1

Jdx —y = -2 \ Yy y=3q,2+2
| dx—y=4
Y 2 —y?=0 \ '
+ \\ / ;'/
11 / \\ , /
,'i / > \ / |
/
~1/ 1 X A%
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3. On se place dans ’espace muni d’un repére orthonormé; on appelle X,Y, Z les trois
axes de celui-ci.
a) Quelle est la nature de la surface quadrique déquation cartésienne 22 +y? — 422 =17
b) Représenter la trace de la surface d’équation cartésienne 22 + 32 — 422 = 1 dans le
plan d’équation z = 0 puis dans celui d’équation z = 0. Comment appelle-t-on chacune
de ces courbes?
a) Cette quadrique est un hyperboloide & une nappe.
b) La trace dans le plan d’équation z = 0 est le cercle centré a lorigine du repere et de rayon
1; celle dans le plan d’équation 2 = 0 est une hyperbole d’équation cartésienne y? — 422 = 1 (cf.
graphique).

% Z

<Y

4. Esquisser les représentations graphiques des surfaces quadriques dont les équations
cartésiennes sont

2 2

X z
o)+ g =1 b)z? +y* = 4.

sl "
S B o

e

]
e
e

e

l
,',"l

I1. Dérivation et gradient‘

1. En appliquant la définition des dérivées, montrer que la fonction f donnée explicite-
ment par f(z,y) = 322 +xy, (r,y) € R? est dérivable par rapport & sa premiére variable
au point (—1,2) et donner la valeur de cette dérivée partielle en ce point.

La fonction f est dérivable par rapport & sa premiere variable au point (—1, 2) et sa dérivée partielle
en ce point vaut —4.

2. On donne les fonctions f, g et h par
fle,y) =In(a® —4+y), glw,y) =cos(z®y* +4y) et h(z,y)=ae /.

a) Déterminer leur domaine de définition, de dérivabilité et les représenter dans un
repere orthonormé.
b) Déterminer les dérivées partielles de ces fonctions.
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L Y
AT
Y
/ r \ . . ,
/ Pour la fonction f, les 2 domaines sont égaux
/ \ a{(r,y) eR?: 22 +y—4>0}.
/ i \ La représentation graphique de cet ensemble
/ \ est la région hachurée, les points de la para-
1 \\\ bole étant exclus de ’ensemble. Les dérivées
/ \ partielles sont données par
/ \
,’12 Y 1 1 " 2x
/ VX D x - =
f’f rf( 7y) .’I}2+y—4
\ et
\‘ D, f(a.y) = ———
2t \ A 12 Y Y $2+y_4
Yy=4a-

Pour la fonction ¢, les 2 domaines sont égaux & R? : ce sont tous les points du plan.
Les dérivées partielles sont données par

Dyg(z,y) = —2xy?sin(z?y? + 4y) et Dyg(z,y) = —(22%y + 4) sin(z%y? + 4y).

Pour la fonction h, les 2 domaines sont égaux a R% \ {(z,y) : y = 0} = R x Ry : ce sont tous les
points du plan sauf ceux de I'axe des abscisses. Les dérivées partielles sont données par

x2 3

D, h(z,y) = (23: - y) e /Y et Dyh(z,y) = z—z e/,

. On donne la fonction f par f(z,y) = In(y/2z2 + 4y?).

a) Déterminer son domaine de définition et d’infinie dérivabilité.
b) Dans le domaine d’infinie dérivabilité, calculer D2f + Df/f.

Les 2 domaines sont égaux a R?\ {(0,0)} et on a D2 f(z,y) + Df]f(z, y) = 3(z? — 4y?) /(2? + 49°)%
. a) Déterminer le gradient de la fonction f donnée par f(z,xs,23) = 2% 25 sin(3z3).
b) Méme question pour la fonction g donnée par g(z,y,z) = 22t VE,

a) La fonction f est dérivable sur R? et son gradient est le vecteur de composantes
(22129 sin(3z3), % sin(3x3), 3232, cos(313)).

b) La fonction g est dérivable sur {(z,y,2) € R® : 2 > 0} et son gradient est le vecteur de
composantes

3,2
((296 + $2y2\/§)e‘8y2\/5, 2x3y\/ge’”y2ﬁ, —;yf e”yzﬁ> )
z

. On donne les fonctions f et g respectivement par

f(z,y) = arcsin (y/z)  g(z,y) = exp(v/z + y2 + 1).

a) Déterminer le domaine de définition A et d’infinie dérivabilité B de ces fonctions.
Représenter ces domaines.

b) Déterminer ’expression explicite de |z|D, f(z,y) + |y|Dy f(x,y)-

c) Déterminer ’expression explicite de F(t) = f (1/t,t), le domaine de dérivabilité de



83

cette fonction et I’expression explicite de sa dérivée.
d) Déterminer I’expression explicite de G(t) = g(sin?(t), cos(t)), le domaine de dérivabilité
de cette fonction et ’expression explicite de sa dérivée.
a) Pour f,ona A= {(z,y) eR*: -1 <y/x <1, 2 #0}et
B={(z,y) €R?*: -1 <y/x < 1,z #0}.
Pour g,ona A= {(z,y) eR*:x+y>+1>0} et B={(z,y) eR?:z+y?+1>0}.
Voici les représentations graphiques de ces ensembles (parties hachurées) :

Les points de la parabole sont compris

Les points des droites sont compris dans )
dans I’ensemble A mais non dans B.

A, sauf 'origine du repeére.
Les points des droites sont exclus de B.

b) On a
si xy >0

0
D) + WD f) ={ Ly e Y

c¢) L’expression explicite de F(t) = f(1/t,t) est donnée par F(t) = arcsin(¢?); si on considere
F sans faire référence a la composition, son domaine de dérivabilité est | — 1, 1[ mais si on tient
compte de la composition alors on doit retirer 0 du domaine de dérivabilité. La dérivée de F' est

2t

DE(t) = ——

d) L’expression explicite de G(t) = g(sin?(t), cos(t)) est donnée par G(t) = exp(v/2) ; son domaine
de dérivabilité est R et sa dérivée est DG(t) = 0.

. On donne la fonction f(z,y) = /a2 + y2.

a) Déterminer son domaine de définition A et celui d’infinie dérivabilité B.
b) Si on définit F par F(zx,y) = f(z,y)(D;f(z,y) + D.f(z,y)), (x,y) € B, montrer que F
est une fonction constante et déterminer cette constante.

Ona A=R%et B=R?\{(0,0)} et F est la fonction constante 1.

. On considére la fonction f.(z,y) = z"e™¥/®, r étant un réel.
a) Déterminer son domaine de définition A et celui d’infinie dérivabilité B.
b) Déterminer le réel r tel que D, f,.(z,y) = yDgfr(:v,y) + D, fr(z,y), (z,y) € B.

Ona A= B={(z,y) €R?:x >0} et le réel r vérifiant 1’égalité donnée vaut —1.
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On donne la fonction f(x,y) = sin(azx)cos(by) ol a et b sont des constantes réelles non
nulles. Montrer que f vérifie ’équation des ondes D?f — (az/bg)Djf =0.
La fonction f est infiniment dérivable sur R? et vérifie bien I’équation des ondes.

L’expérience montre que, dans un champ de température, la chaleur s’écoule dans la
direction et le sens dans lesquels la température décroit le plus vite. Trouver cette
direction et ce sens en tout point du champ puis en un point P donné dans les cas
suivants :

a) T(z,y) = 2> — y? et P a pour coordonnées (2,1)

b) T(z,y) = arctan (y/z) et P a pour coordonnées (2,2)

Esquisser ’isotherme correspondant & la valeur 3 dans le premier cas et a 7/4 dans le
second ainsi que les vecteurs qui correspondent a la direction et au sens obtenus au
point P.

En toute généralité, le gradient de T' est un vecteur qui pointe dans la direction et le sens dans
lesquels T croit le plus vite. Puisque la chaleur s’écoule dans la direction et le sens dans lesquels
la température décroit le plus vite, on considere I'opposé du vecteur gradient de T’ c’est-a-dire le
vecteur de composantes

a) (—2,2y) b) ( Y 7 > .

$2+y2’$2+y2

Au point P, on a respectivement les vecteurs de composantes (—4,2) et (%, —i).

- 22 —y? =3

On donne la fonction f explicitement par

f(z,y) = arcos(1 — 2zy).

(a) Déterminer le domaine d’infinie dérivabilité de cette fonction.

(b) Dans un repére orthonormé, représenter ce domaine en le hachurant.

(c) Calculer I’expression suivante en tout point de ce domaine et la simplifier au
maximum.

Dy f(z,y) —yDy f(z,y)
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(a) Le domaine d’infinie dérivabilité de f est
A={(z,y) eR?*: 0 < zy < 1}.

(b) La représentation de A est la partie hachurée
du plan, les points des axes et de ’hyperbole étant
exclus.

(c) 2Dy f(x,y) —yDy f(x,y) = 0.

11. On donne la fonction f explicitement par
fla,y) =n(z® —y*) — In(y).

(a) Déterminer le domaine d’infinie dérivabilité de cette fonction.
(b) Dans un repére orthonormé, représenter ce domaine en le hachurant.
(c) Calculer ’expression suivante en tout point de ce domaine et la simplifier au

maximum.
aDy f (2, y) +yDy f (. y)

Y,
(a) Le domaine d’infinie dérivabilité de f est 3|
A={(z,y) eR?: 22 —4?> >0, y > 0}. y=-z y=z
(b) La représentation de A est la partie hachurée 9 |
du plan, les points des droites et de I'axe des abs-
cisses étant exclus. 1|
(¢) Dy f(z,y) + yDy f(x,y) = 1.

—2 -1 1 2 3 X
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LISTE 5 : FONCTIONS DE PLUSIEURS VARIABLES (2)

‘I. Dérivation des fonctions composées‘

1. a) On donne f, continiment dérivable sur | —2,4[x] —5,5[. On demande le domaine de
dérivabilité de la fonction F' définie par F(z,y) = f(z + 2y, 2z — 5y), sa représentation
graphique ainsi que ’expression des dérivées partielles de F' en fonction de celles de f.

Y _ 2
y:—%+N‘ y=sl

Le domaine de dérivabilité de F est l’ensemble
{(z,y) eR?: -2 < x+2y <4, -5 <2x—5y<5}.Sa
représentation graphique est la partie du plan hachurée,
les points des droites étant exclus de I’ensemble.

Les dérivées partielles sont
(D2 F)(2,y) = (D1f)(x + 2y, 2z — 5y).1 + (D2f)(z + 2y, 22 — by).2

(DyF)(z,y) = (D1 f)(z+2y,2z — 5y).2 + (Da2f ) (x + 2y, 2z — by).(—5).

b) Méme question pour g, fonction contintiment dérivable sur |0, 1[x]In (7/3),+o0[ et
G(z,y) = g(exp(x), In(arcos(y))).

Y
y=1/2 Tl Le domaine de dérivabilité de G est I’ensemble
{(z,y) eR?: 2 <0, y €] —1,1/2[}. Sa représentation
>~ graphique est la partie du plan hachurée, les points des
1 X bords étant exclus de I’ensemble.
-1
y=-—1

Les dérivées partielles sont

(D2G)(x,y) = (D1g)(exp(z), In(arcos(y))). exp(x)

-1
arcos(y) /1 — y2> .
2. On donne la fonction g continiiment dérivable sur | — 7/2,7/6[x]0, +0o0[x]0,10/9].
a) Déterminer le domaine de dérivabilité de f :t s f(t) = g(arcsin(2t), 1/y/t + 1,t2 + 1).
b) Calculer la dérivée de f en fonction des dérivées partielles de g.

c) Si elle est définie, que vaut cette dérivée en 07 1/37
d) Mémes questions si g est contintiment dérivable sur | — 7/6, 7/3[x]V/2, +00[x]0, 3[.

(DyG)(z,y) = (Dag)(exp(x), In(arcos(y))). (



87

a) Le domaine de dérivabilité de f est A=]—1/3,1/4[.
b) La dérivée de f est donnée par

Df(t) = (D1g) (arcsin(?t), \/%, 2+ 1> .ﬁ—}—(Dgg) (arcsin(%), \/%, 2 + 1) 2(t_«1k1)3
+(Dsg) (arcsin(Qt), \/151—1—717t2 + 1> 2t.

c) La dérivée de f en 0 est donnée par (D f)(0) = (D1g)(0,1,1).24(D29)(0,1,1).(=1/2) ; elle n’est
pas dérivable en 1/3.
d) Le domaine de dérivabilité de f est vide : f n’est jamais dérivable.

. Soit F(t) = f(x(¢),y(t)) avec 2(3) =2, y(3) =7, (Dz)(3) =5, (Dy)(3) = —4, (D1f)(2,7) =6
et (D2f)(2,7) = —8. En supposant satisfaites les hypothéses du théoréme de dérivation
des fonctions composées en 3, que vaut (DF)(3) ?

On a (DF)(3) = (D1f)(2,7).(Dex)(3) + (D2f)(2,7).(Dry)(3) = 62.
. Soit F(s,t) = f(u(s,t),v(s,t)). En supposant satisfaites les hypothéses du théoréme de
dérivation des fonctions composées en (1,0) si

w(1,0) =2 (Dsu)(1,0) = -2 (Dwu)(1,0) =6

v(1,0) =3 (Dsv)(1,0) =5 (Dw)(1,0) =4
t (D1£)(2,3) = -1 et (D2f)(2,3) = 10, calculer (D;F)(1,0) et (D:F)(1,0).

On a (D, F)(1,0) = (D1f)(2,3).(Dsu)(1,0) + (D2 f)(2,3).(Dsv)(1,0) =52 et
(DuF)(1,0) = (D1 £)(2,3).(Dyu)(1.,0) + (D2f)(2,3)-(Div)(1.,0) = 34

. (a) Soient

feCi(]0,1[x] — 00,0 et F(t):f<1n<t;1>,t2+t—6>.

Ou la fonction F' est-elle dérivable ?
Quelle est ’expression de sa dérivée en fonction des dérivées partielles de f 7
(b) Méme question pour

f € C1(]0, +00[x]0, +o0[) et F(z)= fle —1,In(5 — z?)).
(a) Le domaine de dérivabilité de F' est vide.
(b) La fonction F' est dérivable sur | — 2,0[ et 'expression de sa dérivée est donnée par
x —2x
DF(z) = (D1f)(u,v) x (=) + (Da2f)(u, v) X

5— 22
avec (u,v) = (e7® — 1,In(5 — z?)).

. On donne la fonction (z,y) — f(z,y) définie et 2 fois contintiment dérivable sur
R?\ {(0,0)}. On effectue le changement de variables en coordonnées polaires z =
rcos(d), y = rsin(f) (r > 0 et § € [0,27]) et on considére F(r,0) = f(rcos(f),rsin(9)).
Montrer que (Do f)* + (Dyf)? = (D, F)? + (Do F)*/r?

Remarque : le premier membre est pris au point de coordonnées (7 cos(8), r sin(f)) et le second en

(r,0).
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II. Représentation d’ensembles‘

1. Dans un repére orthonormé du plan, représenter, en le hachurant, I’ensemble dont
une description analytique est la suivante

a) A= {(z,y) €R?:0 <y <inf{x, V1 —22}}
b) B={(z,y) €R?:2 >0, 0 <y <az?}
¢)C={(z,y) eR*:z >y, yc[0,1]}

/ el 2 -1 1 2 X

Les points des bords sont compris dans les ensembles.

2. Décrire analytiquement les ensembles hachurés suivants, les points des bords étant
compris dans 1’ensemble, en donnant d’abord
a) ’ensemble de variation des abscisses
b) I’ensemble de variation des ordonnées.

Y Y /' _
Q‘ﬁ
A 1 B—1-7/|
‘/\/5//// - } N y i é),(
4 1 X — — > .
N -1 /N1 X —
=3
Les descriptions analytiques sont les suivantes
A={(z,y) ER*:x € [-4,0], y €[ 1t -3, 5+ 1}
={(z,y) eR?:y € [-3,0], v € [~y — 4,0} U{(z,y) eR*:y € [0,1], = € [4(y — 1), O]}

B={(z,y) eR*:y€[0,+oof, z €[y, ¥
={(z,y) ER*:2€]—00,0], y € [-z,+oo[} U{(z,y) ER? : 2 € [0, +oo], y € [2z, +oo[}

C={(x,y) eR*:yec[-1 ],:ce[y“} +2]}
={(z,y) eER?:2€0,1], y € [~va,Vr]} U{(z,y) ER?:z € [1,4], y € [z — 2, /z]}.
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3. Dans un repeére orthonormé, représenter graphiquement les ensembles A et B si

A={(z,y) ER?:2>0, 2-2 <y <2, 22+y* > 4} B={(z,y) eR*:2>1, 1/2 <y <z}

Pour chacun de ces 2 ensembles,

a) déterminer leur ensemble X (respectivement Y) de variation des abscisses (resp.
des ordonnées)

b) & abscisse (resp. ordonnée) fixée dans X (resp. Y) donner I’ensemble de variation
des ordonnées (resp. des abscisses) de leurs points

c) donner 2 descriptions analytiques en se servant des 2 items précédents.

Y
y=x—2
5 — 2 YY::,,UL
. i ly=1
/ 251 \
[ N of | T
! . 1sf T
10+ K
e
05 /
f/
, " : ; Sx

Les points des bords sont compris dans A et dans B.

Pour A :

a) X =1[0,4] et Y = [0, 2].

b) si x fixé dans [0, 2] alors les ordonnées varient dans [v4 — z2, 2]
si x fixé dans [2,4] alors les ordonnées varient dans [z — 2,2].
si y fixé dans Y alors les abscisses varient dans [v/4 — y2,y + 2].

c) on a

A= {(xay) € R?:x € [OaQ]a ye [V47:C2,2]}U{(Z,y) € R*:z € [234]7 (AS [$72,2]}
={(z,y) eR?:y €[0,2], x € [\/4—y2,y+2].

Pour B :
a) X = [1,+o0[ et Y =]0, +00].
b) si z fixé dans X alors les ordonnées varient dans [1/z, /z].
si y fixé dans ]0, 1] alors les abscisses varient dans 1/y,4o00[
si y fixé dans [1, 4+oo[ alors les abscisses varient dans [y?, +o0].
c) on a
B={(z,y) eR*:z €[l,+o0], y € [1/z,/z]}
={(z,y) eR*:y €]0,1], z € [1/y, +oo[} U{(z,y) €R® 1y € [1,+oo, x € [y*, +oo[}.

4. Décrire analytiquement I’ensemble borné fermé hachuré suivant en commencant par
I’ensemble de variation des ordonnées puis, a ordonnée fixée, I’ensemble de variation
des abscisses.

Faire de méme en commencant par ’ensemble de variation des abscisses.
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Y=z+1

a) Les points A, B, C et D ont respectivement pour coordonnées (—2,0),(0,1),(0,—1) et (2,0).
Les droites qui délimitent I’ensemble ont pour équation AB =x—2y+2 =0, AC=z+2y+2 =0,
et ellipse a pour équation % + 42 =1 ou encore z% + 4y? = 4.

Des lors, ’ensemble fermé hachuré est décrit analytiquement par

{(m’w eR*:ye[-1,0], z € [—2y— 2,2@]}

U{(x,y)€R2:y€[0,1], T € [2y—2,2 1—y2}}
ou encore par

{(z,y) eR? 12 €[-2,0], y € [(—2 —2)/2, (x +2)/2]}

U{(z,y) eER?*: 2 €0,2], y € [-V4—122/2,V4—22/2]}.

b) L’ellipse a pour équation 22 + y?/4 = 1 ou encore 422 + y? = 4. la branche de la parabole qui
comprend le point de coordonnées (1,2) a pour équation y = 24/z. Le point d’intersection entre

les deux courbes est le point de coordonnées ((—1 + v/5)/2, v/ —2 + 2v/5).

Des lors, ’ensemble fermé hachuré est décrit analytiquement par

{(x,y)eR2;ye {0, —2+2V5|, z € [-714\/71}
ou encore par

{(z,y) eR*: 2 € [0,(-1+5)/2], y €[0,2y7]}
U{(z,y) eR?:z € [(-1+V5)/2,1], y € [0,2V1 —2a?]}.
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c) Les points A, B et C ont respectivement pour coordonnées (0, 1), (2,0) et (8,3) . Les droites qui
délimitent I’ensemble ont pour équation AB : x4+ 2y —2 =0, BC : x — 2y — 2 = 0, et la parabole

a pour équation y> — 1=z .

Des lors, ’ensemble fermé hachuré est décrit analytiquement par

{(:z:,y) €ER*:yc(0,1], z € [f2y+2,2y+2}}u{(:c,y) €ER?:yc[1,3], z € [y271,2y+2]}

ou encore par

{(r,y) eR*:z€(0,2, ye [;+1,\/x+1”u{(x,y) ER?:ze2,8), ye [5—1,\/m}}.

2

5. On donne 1’ensemble B suivant. Représenter graphiquement celui-ci en le hachurant.

B ={(z,y) €R?:z €[0,27], sin(2z) <y < sin(z)}.

15

1.0¢

0.5F

<05

-10¢

-15

Les points des < bords > sont compris dans ’ensemble.

y = sin(2z)
y = sin(z)
X

6. En utilisant les coordonnées polaires, décrire analytiquement les ensembles hachurés
suivants, les points des bords étant compris dans A mais non dans B.

Yy =-zx 'Y

3

LY
P B
// ) \ y=+32/3
// \
ST
\\ \\;ﬂ/ ) //

Les ensembles A et B exprimés en coordonnées polaires sont respectivement

A= {(r,@):re 1,3], 0 ¢ [3

w]} ot B — {(r,e):re]o,z[, GG}W,?[}.
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7. Dans un repére orthonormé du plan, représenter, en le hachurant, ’ensemble dont
une description analytique est

E={(z,y)) eR*: -1<2<0, y>0, 22 +¢y*>1}.

Ensuite, décrire analytiquement cet ensemble en utilisant les coordonnées polaires.
v S S Ny

Les points des bords sont exclus de I’ensemble.
L’ensemble F exprimé en coordonnées polaires est

: X E’—{W):eer’”{’Te}l’wsé‘){}'

[\
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Liste a établir en fonction de la matiere prévue pour l'interrogation

LISTE 7 : REVISIONS EN VUE DE L INTERROGATION
DU 31 MARS 2026

Liste & établir en fonction de la matiere prévue pour l'interrogation
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LISTE 8 : FONCTIONS DE PLUSIEURS VARIABLES (3)

‘I. Permutation de ’ordre d’intégration‘

1. Supposons que la fonction f est intégrable sur I’ensemble considéré. Permuter les
intégrales et représenter 1’ensemble d’intégration dans les cas suivants

a)/_11 (/y:y f(z,y) dm) dy b)/: </ym

flz,y) dx) dy.

a) Si on permute l'ordre d’intégration, I'intégrale s’écrit

/_31 (/_TLQ flz,y) dy) dx+/_11 (/_11 Flz,y) dy) daz+/13 (/z+2

-1

f(z,y) dy) dx

et I’ensemble d’intégration est la partie hachurée du plan ci-dessous.

R4
2
y=x+2 \y=—$+2
1 y=1
¢ ¢ P —
‘/f ! 7\3 +
-1

b) Si on permute l'ordre d’intégration, 'intégrale s’écrit

/03 (/O e dy) d:a+/3m </m e dy) di

0

et I’ensemble d’intégration est la partie hachurée du plan ci-dessous.

WY

y=x
Tty 18//
y=3
AL \
\
it \
\
|
O
X

2. On considére une fonction f intégrable sur ’ensemble hachuré fermé borné A ci-
dessous. Ecrire, dans un ordre et dans ’autre, I’intégrale

Y

//A f(z,y)dz dy. I
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L’intégrale sur cet ensemble s’écrit

/13 ([ s dy)dm:/ol (/13 Fay) dx)dy+/13 (/3 F) dx)dy

II. Intégration sur des ensembles fermés bornés‘

1. Dans le plan, on considére I’ensemble borné fermé A délimité par le graphique de la
droite d’équation cartésienne x + y = 0 et celui de la fonction z — —22.
a) Représenter A dans un repére orthonormé et en donner une expression analytique.

b) Calculer, si elle existe, I’intégrale de f sur A si f: (z,y) — f(z,y) = zcos(y).

rY
\\\ 10F
\05
- - /\ L . L’expression analytique de A est
/ % X A={(z,y) eR?:z€[0,1], y € [~z,—2?]}
o \ ou encore
/ \\\\ A:{(xvy)€R2:y€[_]—70]v xe[_yv\/_y}}'
/ r \ N La fonction f est intégrable sur A et son intégrale
/ 20 \ Y ETT vaut sin(1) — (cos(1) + 1)/2.
25 \ Y = _1.2

2. Si elle existe, calculer 1’intégrale de
a) f(z,y) =4+2%sur A= {(z,y) eR?*: 2 €[-2,2], ye[l—l—x 9 — 2%}
b) f(a,y) = cos(y?) sur A= {(z,y) €R? :w € [-1,0], y € [, 1]}
c) f(z,y) = y*cos(zy) sur A = [r/2,7] x [-1,1]}

a) La fonction f est intégrable sur A et son intégrale vaut 512/5.
b) La fonction f est intégrable sur A et son intégrale vaut sin(1)/2.

¢) La fonction f est intégrable sur A et son intégrale vaut (2w — 8) /7

3. Si elle existe, déterminer la valeur de I’intégrale sur ’ensemble A borné fermé hachuré
ci-dessous dans les cas suivants

a) [[,e" 7Y dedy b) [[,zy dxdy

c) // dedy
Y A V1422
s Y 1Yo
el \ : l
O X Ly X

a) La fonction f est intégrable sur A et son intégrale vaut (1/e — 1)°.

b) La fonction f est intégrable sur A et son intégrale vaut 3/8.
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c¢) La fonction f est intégrable sur A et son intégrale vaut (V17 —1)/2.

Y V2
4. Soit I:/ / cos(Va3) dx | dy.
0 y2
Représenter ’ensemble d’intégration et calculer I’intégrale si c’est possible.

ZAY
l’:y2

y=m

La fonction est intégrable sur cet ensemble
(partie hachurée) et son intégrale vaut 0.




LISTE 9 : CORRECTION DE L'INTERROGATION
DU 31 MARS 2026

97




98 CHAPITRE 5. CORRECTION DES EXERCICES 2025-2026 (MATH1009)

LISTE 10 : FONCTIONS DE PLUSIEURS VARIABLES (4)

‘I. Intégration sur des ensembles non fermés bornés‘

1. Sielles ont un sens, calculer les intégrales suivantes et représenter ’ensemble d’intégration.

1
a)//AEd:cdy avec A={(z,y)eR?®:2>1, 0<y<1/z}

Y
La fonction est intégrable sur A 1
et son intégrale vaut 1. L’ensemble 3
d’intégration est I’ensemble hachuré

ci-contre. 2+

1 “+o00
b) / (/ ey dm) dy
—co \JO 1 y=1

La fonction est intégrable sur ’ensemble ‘
{(z,y) € R?*: 2 € [0, +00], y €] —00, 1]} et son 1 X
intégrale vaut e/3. L’ensemble d’intégration
est ’ensemble hachuré ci-contre.

A

c)// e*yzdxdy avec A:{(x,y)GRzz()SxSy}‘Y
A

La fonction est intégrable sur A et y=2
son intégrale vaut 1/2. L’ensemble
d’intégration est l’ensemble hachuré 1y
cl-contre. 1 D'e
d) // Be ™V dedy avec A={(z,y)eR2:z>0, 1<y}
A
\ Y

La fonction est intégrable sur A 4”\
et son intégrale vaut 1. L’ensemble 31|
d’intégration est I’ensemble hachuré |
ci-contre. 2+ |

l,

0 1 zy =1
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2. Déterminer si les intégrales suivantes existent ; si oui, les calculer. Représenter géométriquement
I’ensemble d’intégration dans chaque cas.

+oo TR 1 +o0 1 z?
ye NG 1
der | dy, b ——— dy | dz, dy | d
9 ) </o Tty x) ) ( PR y) n o </o Tty y) '

w'

a) La fonction est intégrable sur
{wy) € R : y €o+ocf = € [0,97]} y= vz
et son intégrale vaut In(2)/2. L’ensemble B
d’intégration est I’ensemble hachuré ci-contre.

Y

b) La fonction est intégrable sur
{(z,y) € R? : = €]0,1], y € [z, +0o[} et son
intégrale vaut 7/2. L’ensemble d’intégration 1 X
est ’ensemble hachuré ci-contre.

c¢) La fonction est intégrable sur
{(z,y) € R? : z €]0,1], y € [0,22]}
et son intégrale vaut 21n(2) — 1. L’en-
semble d’intégration est 1’ensemble
hachuré ci-contre.

3. On consideére l’intégrale double suivante

I /Om (/OT cos(y — z)e" dy) do

a) Permuter l'ordre d’intégration et représenter 1’ensemble d’intégration dans un
repere orthonormé.

b) Si elle existe, déterminer la valeur de cette succession d’intégrales dans un ordre
et dans ’autre.

c¢) Trouve-t-on la méme valeur quel que soit 'ordre d’intégration? Pouvait-on le
prévoir sans calculer les 2 intégrales ?

a) L’ensemble d’intégration A est donné par

A={(z,y) €R* 1z €[0,+00, y € [0,2]} = {(z,y) €R* 1y € [0, +0c[, = € [y, +oo[}
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et est représenté par I’ensemble hachuré ci-dessous.

400 “+ o0
En permutant l'ordre d’intégration, on a I’ = / (/
0 y

cos(y —x)e” ” dx) dy.

b) La fonction est intégrable sur A et, dans un ordre ou dans I'autre, son intégrale vaut 1/2.

¢) On trouve la méme valeur car la fonction est intégrable sur A.
Y

A

Yy=x

4. Calculer Vintégrale de f: (z,y) — f(z,y) = x — y sur ’ensemble fermé hachuré suivant
(et donner une description analytique de cet ensemble)

Y

Une description analytique de ’ensemble d’intégration est donnée par
A={(z,y) eR* 1z € [0, +0c[, y € [0,e7"]}

= {(z,y) €R*:y €)0,1], z € [0, —In(y)]} U {(z,y) €ER?:y =0, = > 0}

La fonction est intégrable sur A et son intégrale vaut 3/4.
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LISTE 11 : FONCTIONS DE PLUSIEURS VARIABLES (5)

‘I. Intégration par changement de variables polaires‘

1. Si elle existe, calculer
a) // vVr2+y2dxdy ou A est ensemble hachuré ci-dessous.
A

b) / / zy drdy ou B est 'ensemble hachuré ci-dessous.
B

c) //C (2z+y) derdy ou C={(z,y) €eR?*:0<y<inf{—z,V1-—22}}.

y=-x Y
y=- A Y y==x .
\ =2 B / : AP
AN =t s //‘/ \l |
\\3 -2 \1 ) 2 f; X
L \}//’ /
\ TO \
/ IVQSJ \ 2
[ % | e
—2 -1 1 2 X

Les 3 fonctions sont intégrables et les intégrales valent respectivement 47 /3, —5 et 1/3 — v/2/2.

. Soit A une partie du plan (bornée et fermée). Le centre de masse de A (considéré
homogene) est défini comme le point de coordonnées (z4,y4) ol

xA:s_l//:Edﬂcdy, yA:s_l//ydmdy
A A

et ou s est 1’aire de la surface A.
Déterminer la position du centre de masse d’une plaque homogeéne dont la forme est
un tiers de cercle de rayon R (R réel strictement positif).

RvV3 3R
La position du centre de masse est donnée par le point de coordonnées (2\[, 2) dans un
T T

repere orthonormé correspondant au graphique ci-dessous.

La masse d’une plaque plane est donnée par

m = //R 0(x,y)dxdy,
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ou §(z,y) est la densité au point de coordonnées (z,y). Considérons une plaque plane de la
forme d’un triangle isocele rectangle R dont les c6tés égaux mesurent 4 m. Si la densité en
un point P est directement proportionnelle au carré de la distance de P au sommet opposé
a I’hypoténuse !, si I’on place ’origine du repére sur ce sommet et si les axes OX et OY
sont les prolongations des c6tés de méme longueur du triangle R,

a) quelle est la masse de cette plaque ?

b) en quelles unités s’exprime la constante K ?

y
4

La masse de la plaque est 128K/3 kg et la constante K s’exprime en kg/m?.

1. c’est-a-dire 6(z,y) = K (22 + y2) (ott K est une constante)
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LISTE 12 : APPROXIMATIONS POLYNOMIALES

‘Approximations polynomiales ‘

1. Dans chacun des cas suivants, déterminer ’approximation polynomiale a 1’ordre n en
xo pour la fonction f;. Représenter fo (—ou f3 ou fs— ) et ses approximations. Pour

f59

a) donner une expression explicite du reste de ces approximations.

b) indiquer ou se situe le graphique de f; au voisinage de 0 par rapport a celui de
chacune des approximations en tenant compte du point précédent.

fi(z) = cos(x) 3%, 29 =0,n =0,1,2,3 folx) =149z, 20=0,n=0,1,2
fa(x) =1/(1 —2x), o =0,n=0,1,2 fa(x) = arctan(z), zo =0 (resp. zg =1),n =0,1,2
fs(x) = cos*(x), 7o =0, n=0,1,2 fo(x) =sin(z), x0 =1,n=0,1,2
Fonction | Ordre 0 | Ordre 1 Ordre 2
f 1 143z 143z +422, z€R
9z 9z  81z?
1 1+ — 1+ ———— R
f2 3 MECTEE I
f3 1 14 2x 142z +422, z €R
fa(zo=0) |0 T r, r €R
v T x—1 7 -1 (z-1)?2
fs 1 1 1-22, z€R
: . : . (x—1)2
fe sin(1) | sin(1) 4+ cos(1)(z — 1) | sin(1) 4+ cos(1)(x — 1) — sm(l)T, z eR

L’approximation & 'ordre 3 en 0 de f; est donnée par P(x) = 1 + 3z + 422 + 323, » € R.

a) Pour f5, si on note R, le reste de I’approximation polynomiale de f & I’ordre n en 0, alors pour
tout x € R, il existe ug, u1, us compris entre 0 et x tels que

2

2
5T = cos(2uy)x

Ro(x) = —sin(2ug)z, Ri(x)=-2 cos(2u1).32j

et

. 3 2sin(2uq) 22
Ry(x) = 4sm(2u2).§ = %

b) Lorsque x est au voisinage de 0, Ry(x) et Ri(x) sont négatifs tandis que Ra(x) est positif. Des

lors, le graphique de la fonction est situé en dessous de celui de Py et de celui de P; mais au-dessus
de celui de Ps.

Dans les graphiques suivants, notons P; ’approximation polynomiale a 1’ordre 7.
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¥ / \ / —13/ A0 05 05 10 ;1,53(
| Py Py
\ 05|
‘ I ‘ ‘ — P
“1 “ 1 2 S'S f3 P o "
= 1o o5 & 103(

2. a) Déterminer ’approximation polynomiale 4 ’ordre 3 en 0 de la fonction cos et en
estimer le reste. Représenter la fonction et cette approximation dans le méme repére

orthonormé.

L’approximation polynomiale & 'ordre 3 en 0 est donnée par P3(z) = 1 — 22/2, x € R et le reste
vaut Rz(x) = cos(u)z*/4!, x € R ol u est un réel strictement compris entre 0 et x. Dés lors, on a

|Rs(x)| < 2/24.

Y

/ of Py

b) Déterminer ’approximation polynomiale en 0 & ’ordre 1, 2 et 3 de la fonction f(x) =
xzsin(x), = € R. Représenter graphiquement ces approximations dans le méme repére
orthonormé que celui ou f est représenté (cf ci-dessous), en justifiant les positions

relatives des courbes.

(Suggestion : |sin(z)| < |z| Vz € R)

y = xsin(x)

Les approximations polynomiales en 0 a l'ordre 1, 2 et 3 de la fonction f sont respectivement
Pi(z) =0, Py(z) =22 = P3(z), x €R.

Au voisinage de zéro, le graphique de f est

1) au-dessus de celui de P,

2) en dessous de celui de P, = P
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) P=D
\\ 2: /
L //
/N[ / Py
\56 ) P : 2 4 é/ 3(
\ . \
: \
\ /S
\/ B \V

3. Un professeur de mathématique lance un défi a ses éleves. Le premier qui donnera
une approximation du nombre e¢ avec les 3 premiéres décimales exactes et pourra
expliquer sa méthode aux autres sera dispensé de la prochaine interrogation. Pour
relever le défi, les éleves, restés en classe, n’ont droit qu’a une feuille et un crayon.
Ils sont sans acceés a internet et ne peuvent utiliser ni gsm, ni calculatrice ...

Comment peuvent-ils procéder ?

L’approximation polynomiale en 0 & 'ordre n (n € N) de I'exponentielle est donnée par

2 SCS SC4 565 QCG n

x
Pue)=1dz+op+optp ottt

34 B 6l T T ER

et le reste associé vaut R, (z) = e“ 2" /(n +1)!, 2 € R of1 u est un réel strictement compris entre
0 et z. Dés lors, si z € [0,1], e* € [1,e] C [1,3] et ona R, (z) < 32" /(n+ 1)

Si x =1, l'inégalité

3 1
———— < — est vérifiée si n > 6 (7! = 5040).
(n+1)! ~ 10 26 )
Des lors, en prenant n = 6 et x = 1, une valeur approchée de e est donnée par

1 1 1 1 1 1 1 1 1 1 017
P(l)=1+1 — =2 —t—+——=24+_—=2,718...
(1) ity +3'+4'+5'+6' +2+6+24+120+720 +720 718

4. Déterminer ’approximation polynomiale a ’ordre 0,1,2,3 en 0 des fonctions données

par?
1—=2 —x+2
gl(x) n <x+ 1) ’ gg(l‘) 22+ —1

Pour g;, les approximations polynomiales a l'ordre 0,1, 2,3 en 0 sont respectivement
3

2
Po(z) =0, Pi(z) = 2z, Py(x) = —2z, Ps(x) = —22 — —

.z ER
3 X

Pour g¢-, les approximations polynomiales a ’ordre 0, 1,2,3 en 0 sont respectivement

Py(z) = 2, Pi(z) = -2 —2a, Py(z)=—2—x—52% Py(z)=-2—a—5z> 72 x€R.

2. Suggestion. Utiliser le développement de In(1 + z) et In(1 — x) pour g1 et décomposer en fractions simples pour ga.
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5. Un tunnel d’une longueur [ relie deux points de la surface de la Terre. Si R désigne
le rayon de la Terre, déterminer une approximation de la profondeur maximale p de
ce tunnel.

tp

2

Une approximation de la profondeur maximale de ce tunnel vaut T
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LISTE 13 : DEVELOPPEMENTS EN SERIE DE PUISSANCES

‘Développements en série de puissances‘

1. Si possible, développer les fonctions suivantes (données explicitement) en série de
puissances de z au voisinage de 0

r—1
z+1’

fi(z)

On a les développements suivants

et

fa(z) =

-3z 4+ 2
202 —3x+1°

+o0 too
filz)=1-2 Z(—l)mxm =-1-2 Z (=1)™z™ pour ze€]—-1,1]
m=0

+oo

fal) =) (1 +2m)a™

m=0

pour

m=1

ze]—1/2,1/2].

2. Déterminer le développement en série de puissances de = des fonctions suivantes

fa(x) = sh(x) =
f5(x) =sin(x), z €R

o= ?

fi(z) = 23 exp(—z), z €R

e —e "

—5— rER?

14+

), x €] —1,1]

ch(z) =

et +e "

, z€R
B xr

fa(x) = cos(z), x €R

fo(x)=I(l+2), z €] —1,1]

fs(z) = arctan(z), z € R

Fonction | Développement en série de puissances Fonction | Développement en série de puissances
too mt3 oo
h > (- —» €R fs d ()M (2m 4 1)), zEeR
m=0 ’ m=0
+oo om 00 m—+1
T T
, €R -)"—— z€]-1,1
f2 mE:() e " fe mEZO( ) mr1 © ] [
+oo 2m+1 +oo 2m+1
T T
: E 3 TER , x€l—1,1
fo 2 Gy ? fr 2o omt 1" I=Lil
= +o0 L2ml
2 : 2
f4 0(—]_)mx m/(?m)', r €R fg E 0(—1 1 xe]—]w]_}
m= m=

3. Les fonctions ch et sh sont appelées respectivement cosinus et sinus hyperboliques
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LISTE 14 : MATHEMATIQUES APPLIQUEES

Fonctions de plusieurs variables ‘

1. En thermodynamique, il existe essentiellement 3 types d’équilibres macroscopiques :
I’équilibre thermique, 1’équilibre mécanique et 1’équilibre osmotique (mélange ho-
mogene %). Dés lors, par définition, un équilibre thermodynamique est atteint lorsque
ces 3 équilibres sont réunis.

Selon le premier postulat de la thermodynamique, l’équilibre thermodynamique d’un
systéme physique se définit a l’aide de 3 paramétres : l’énergie interne U, le volume
V et le nombre de particules N du systéme.

Le second postulat stipule qu’il existe une fonction S, dépendant de U, V et N, qui
est maximale a l’équilibre thermodynamique. Cette fonction est appelée entropie du
systéme et la connaitre, c’est connaitre ’ensemble du systeme. Cette fonction permet
de plus de déterminer les équations d’état qui régissent le systéme : ces derniéres font
intervenir les dérivées partielles de S et sont données par

as 1 s p s —u
DuS=(7) == DyS = = DyS=(+=] =+
v (6U>V7N T v (av)w T N (azv)w, T
ou

— T est la température du systéme

— p est la pression du systéme

1 est le potentiel chimique du systéme (qui renseigne sur 1’équilibre osmotique
d’un systéme®);

et ou les variables indicées sont considérées comme constantes.

Sachant que ’entropie du gaz de Van Der Waals (archétype des gaz réels), est donnée
par

_ N2
S = ksNl <V Nvo) L 3ksN <U+KZN /V> L 3keN (47rm) 5

N 2 N 2 sie ) Tt

ou

— kp est la constante de Boltzmann et vaut approximativement 1,38.10723J/K,

vy est le volume occupé par une particule et dans lequel les autres particules ne
peuvent pénétrer,

— K; > 0 est le parameétre d’interaction entre les particules,

— m est la masse d’une particule,

— 1 est la constante de Planck et vaut 6,626.10734.J.s,

déterminer les équations d’état d’un tel gaz lorsque le nombre de particules N est

constant et, & partir de la premiére équation d’état, exprimer 1’énergie interne U en
fonction de V, N et T.

Solution. La premiere équation d’état conduit a

3kpN 1
D = — = —
vS 2U + K;N2JV) T

qui peut se réécrire sous la forme

K;N?

3

4. Par exemple, si on jette une goutte d’encre dans un verre d’eau, ’encre va “diffuser” dans le liquide et ’équilibre est
atteint lorsque ’encre est mélangée de facon homogene avec ’eau.

5. De maniere générale, si deux substances de potentiels chimiques respectifs w1, u2 sont mises en présence 'une de
l’autre, ’équilibre thermodynamique est atteint lorsque p1 = po.
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La seconde équation d’état conduit a

kgN 3kgN _ —K;N?/V?  p

DyS = _P
VS SV TN T T2 CUTRKNGV T

2. La pression P (en kPa), le volume V (en ) et la température 7' (en K) d’une mole
d’un gaz parfait sont liés par ’équation © :

PV =8,31T.

Sachant que, lors d’une mesure a l’instant ¢, la température d’un tel gaz, qui est de
300K, augmente a la vitesse de 0,1K/s et que son volume, qui est de 100/, augmente
a raison de 0,2!/s, déterminer la vitesse de variation de la pression de ce gaz.

Solution. La pression diminue & la vitesse de 0,04155 kPa/s.

3. La recherche des extrema d’une fonction & une seule variable est relativement aisée :
il suffit de rechercher les valeurs en lesquelles la dérivée de cette fonction s’annule
et de voir s’il s’agit d’un minimum, d’un maximum ou d’un point d’inflexion. Cette
recherche s’avere plus délicate pour une fonction de plusieurs variables. Cependant,
pour une fonction de 2 variables, nous disposons du test suivant, appelé test des
dérivées partielles :

Soient A une partie de R?, (a,b) € A et f: (z,y) — f(x,y) une fonction
2 fois continiiment dérivable sur A telle que
(Dzf)(a;b) = (Dy f)(a,b) = 0.
Posons
D = (D3 f)(a,b)(Dyf)(a,b) = (DD f)(a, b)]*.
(a) Si D >0 et si (D2f)(a,b) > 0 alors f(a,b) est un minimum local
de f;

(b) Si D >0 et si (D2f)(a,b) <0 alors f(a,b) est un maximum local
de f;

(¢) Si D <0 alors f(a,b) n’est ni un minimum local, ni un maximum
local de f; (a,b) est appelé “point-selle” ;

d) Si D =0 alors le test n’est pas concluant.
( p

En se basant sur ce test,
a) rechercher les extrema ainsi que les points-selles de la fonction

folzy) e fla,y) =2t +y* —day + 1.
Solution. Lorigine (0,0) est un point-selle. De plus, f(1,1) = —1 et f(—1,—1) = —1 sont des

minima locaux de f.

b) déterminer la distance’ (c.-A-d. la plus courte distance) entre le point de coor-
données (1,0, —2) et le plan d’équation cartésienne z + 2y + z = 4.

Solution. Le point de coordonnée (11/6,5/3,—7/6) correspond & un minimum local (et méme
global car en géométrie, on prouve que la distance d’un point & un plan est unique) de la

6. Cette équation est 'une des équations d’état d’un gaz parfait, obtenue par dérivation partielle de ’entropie d’un tel
gaz (cf. exercice précédent).
7. Suggestion : la distance entre deux points de coordonnées (x1,y1,21) et (z2,y2,22) est donnée par
d= /(1 —22)? + (y1 — y2)% + (21 — 22)?
et, comme d > 0, minimiser d équivaut & minimiser d2.
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distance, qui vaut en ce point 5v/6 /6. La distance du point donné au plan donné vaut donc

5V/6/6.

4. Si une charge électrique est répartie sur une région R et si la densité de charges (en

unités par unités carrées) est donnée par p(x,y) en un point(z,y) de R, alors la charge
totale () présente sur cette région est donnée par

Q= //R pz,y) dzdy.

Une charge électrique est distribuée sur le domaine triangulaire D de la figure ci-
dessous de maniére telle que la densité de charge en (z,y) est donnée par p(z,y) = 2zy,
mesurée en coulombs par meétre carrés (C/m?). Calculer la charge totale présente sur
D.

Y 4
1 (1,1)
0 1 X

Solution. La charge totale présente sur le domaine triangulaire donné est de (5/12) C.

. En physique, le moment d’inertie d’'une masse ponctuelle m par rapport a un axe est

défini par le produit mr?, ol r est la distance entre la masse ponctuelle m et ’axe.
Cette notion se généralise au cas d’une plaque de métal, qui occupe une région R du
plan et dont la densité en (z,y) est donnée par p(z,y), de la maniére suivante.

Le moment d’inertie d’une telle plaque par rapport a ’axe des abscisses (resp. des
ordonnées) vaut

Ix :// 2p(z,y) drdy (resp IY:// y2p(x,y) dwdy)-
R R

Il peut également étre intéressant de considérer le moment d’inertie par rapport a
Porigine O, celui-ci étant donné par

o= [[ @+ 7)oty dudy

On remarque évidemment que Ip = Ix + Iy.

Soit un disque homogéne D de densité p(z,y) = p et de diametre d. Déterminer

a) le moment d’inertie de ce disque par rapport & son centre;

b) le moment d’inertie de ce disque par rapport 4 une droite quelconque d' passant
par son centre.

Solution. a) Considérons le repeére orthonormé dont 'origine O est le centre du disque donné,
et dont les axes coincident avec deux droites perpendiculaires passant par O. On obtient des
lors la configuration suivante :
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Dans ces conditions, le disque D est décrit par

D= {(;my) €R* |22+ 4% < (3)2}

ce qui correspond en coordonnées polaires a I’ensemble

D = {(r,9)|re}0,;l] 0e [o,%]},

auquel on ajoute le centre du disque.
Ainsi, le moment d’inertie du disque D par rapport & son centre correspond au moment d’inertie
par rapport a l'origine du repere choisi et est donné par

4
Ip = // (22 + ) p(z,y) dedy = // r2prdrdd = W;d .
D ’

b) Vu le choix du repére, le moment d’inertie du disque D par rapport a une droite passant
par son centre correspond au moment d’inertie par rapport a 'axe X ou encore par rapport a
I’axe Y. On en conclut donc que tous ces moments d’inertie du disque sont égaux, c’est-a-dire
Ix = Iy = Iy quelle que soit la droite d’ passant par O. Par conséquent, comme

Ip =Ix + Iy =21y,

il s’ensuit que

7 _Iﬁ_ﬂpd4
YTy T s

6. Dans certains contextes, le calcul de probabilités peut se ramener a du calcul intégral.
En effet, lorsque ’on modélise une quantité X a 1’aide d’une fonction de densité
x — fx(z) positive, intégrable sur R et d’intégrale égale a 1, la probabilité que cette
quantité soit supérieure (resp. inférieure) & une valeur a € R (resp. b € R) est donnée
par

+oo b
P[X > a :/ fx(x)dx (resp. P[X < 0] :/_ fx(x) dm).

De plus, si I’on s’intéresse & une autre quantité Y que ’on désire étudier conjointement
avec X, ces deux quantités peuvent étre modélisées simultanément a 1’aide d’une
fonction de densité jointe (z,y) — f(x v)(z,y) positive et intégrable sur R? et telle que

/*: </;OO foxwy(@.y) dx) dy = 1,

auquel cas la probabilité que (X,Y) € R (R partie de R?) est donnée par
PIX.Y) € Rl = [[ foci (o) dody.
R

Le patron d’une fabrique de batteries destinées aux appareils électroniques tels que
les GSM, les MP-3, etc... s’intéresse a la longévité de ses produits et décide d’étudier
conjointement le nombre maximal (qu’il note X), ainsi que le nombre minimal (qu’il
note Y), d’années de fonctionnement de ces derniers. Aprés bien des calculs, il arrive
a la conclusion que la fonction de densité jointe de X et Y est de la forme
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- C(z +2y) si 0<y<z<10
f(X,Y) (x,y) - { 0 sinon .
(a) Déterminer la constante C pour que la fonction f(x y) soit bien une fonction de
densité jointe.
(b) Calculer la probabilité qu’une batterie fonctionne au plus 7 ans mais au moins 2
ans.

Solution. (a) Pour que la fonction donnée soit une fonction de densité, la constante C' doit
valoir 3/2000.

(b) La probabilité que la durée de vie d’une batterie de cette fabrique soit au maximum de 7
ans et au minimum de 2 ans est de 19/80 = 0, 2375, c¢’est-a-dire proche de 24%

7. Deux variables aléatoires X et Y, modélisées respectivement par les fonctions de
densité fx et fy, sont dites indépendantes lorsque leur fonction de densité jointe vaut
le produit de leurs fonctions de densité respectives, c.-a-d.

foxy)(@,y) = fx (@) fy ().

En outre, un temps d’attente 7" est modélisé par une fonction de densité de la forme

fT(t):{ 0 sit <0

p et/ e sit>0
ou i > 0 est le temps d’attente moyen.

Le directeur d’un cinéma constate que le temps d’attente moyen pour obtenir un
ticket est de 10 minutes, et celui pour obtenir une boisson fraiche de 5 minutes. En
supposant que ces temps d’attente sont indépendants, calculer la probabilité qu’un
spectateur attende au total moins de 20 minutes avant de prendre place en ayant son
ticket et une boisson.

Solution. Si I'on note X (resp. Y') le temps d’attente pour obtenir un ticket (resp. une boisson
fraiche), il vient que P[X +Y < 20] = 1+ 1/e* —2/e? ~ 0, 7476. Par conséquent, environ 75% des
spectateurs attendent moins de 20 minutes avant de s’asseoir.

Calcul matriciel ‘

1. Le mouvement d’une particule se déplagant dans le plan est régi par les équations
différentielles suivantes :

Dz(t) = —4x(t) — 3y(t) + 5t
Dy(t) = —2z(t) —5y(t) + 5et -
Déterminer les composantes (z(t),y(t)) du vecteur position de cette particule & tout

instant t¢.

Solution. Le systéme donné s’écrit

(Do ) =( 2 200 )+ (o). (+)
—_— ——

:=DP(t) =A =P(t) :=B(t)

Tentons de diagonaliser la matrice A. On a
det(A—X1) = N+ +14=A+2)A+7)

et donc les valeurs propres de A sont —2 (simple) et —7 (simple), ce qui entraine que A est
diagonalisable. Apres recherche, il s’avere que les vecteurs

()« ()
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sont des vecteurs propres de A associés respectivement & —2 et —7. Ainsi, en posant

S = ( 3o ),ilvient que S1AS = ( °o )
(v )= (5)

(5~ (58

et, en multipliant & gauche par S™! les deux membres de 1’égalité (x) ci-dessus, on obtient que

Deés lors, en posant

il vient que

(B )=o) o (%)
o (B s (3 e (B) e

Or, det(S) = —5 et l'inverse de S est donnée par

a1/ =11
5_5 2 3 /)

Par conséquent, ’équation (xx) équivaut a

DX(t)\ (-2 0 X(t) +1 -1 1 5t
DY () ) 0o -7 Y(t) 5 2 3 5et J°
ce qui équivaut encore au systeme
DX(t) = —2X(t)—t+e€
DY (t) = =TY(t)+2t+3e" ~
Les équations différentielles sont alors découplées et peuvent étre résolues séparément. Les solutions
de ces deux dernieres EDLCC sont les fonctions

1 1 1
X(t)=Cre ™ + et — —t + - R
( ) Che + 36 B + 1 t e
ot 3, 2. 2
Y(t)=Coe ™+ et + 2t — —, teR
(t) = Coe™ " 4+ g€ + =t~ 197 €
ou C1,C5 € C. Enfin, vu ce qui précede, le vecteur position de la particule a I'instant ¢ est donné
par
x(t) \ X))\ _ (-3 1 X))\ _ ([ -3 1
< (1) ) -0 < vy )= 2 1)Uy )= 2 )X0O+ 1 )Y0
ou encore
5 25 155
__ —2t —7t 9 ¢, 20, 1oo R
x(t) 3C1e” "+ Cye g€ Tt 1o £ €
25 5 45
N =9 —2t T e P R
y(t) Cre "+ Cye +24e 7+98’ €
ou Cl, Cy eC.

. Le mouvement d’une particule se déplacant dans 1’espace est régi par les équations
différentielles suivantes :

Dxz(t) = x(t)+2y(t) — 2(t)
Dy(t) = 2z(t) +4y(t) — 22(t) .
Dz(t) = —x(t) —2y(t) + 2(t)
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Déterminer les composantes (z(t),y(t),z(t)) du vecteur position de cette particule a
tout instant ¢.

Solution. Le systéme donné se réécrit

Dx(t) 12 -1 z(t)
Dyt) | = 2 4 -2 y(t) |. (%)
Dz(t) -1 -2 1 2(t)
:=DP(t) =A =P(t)

Les valeurs propres de la matrice A sont 0 (valeur propre double) et 6 (valeur propre simple).
Apres recherche, il s’avere que les vecteurs

1 2
0 et -1
1 0

sont des vecteurs propres de A, linéairement indépendants, associés & 0, ce qui entraine que
la matrice A est diagonalisable puisqu’elle posseéde au moins 3 vecteurs propres linéairement
indépendants. De plus, le vecteur

1
2
-1

est un vecteur propre associé a la valeur propre 6.
Ainsi, en posant

1 2 1 0 0 0
S=10 -1 2 , il vient que ST'AS=| 0 0 0
1 0 -1 0 0 6
Des lors, en posant
X(t) x(t)
Yty | =5 y()
Z(t) 2(t)

et en multipliant & gauche par S~ les deux membres de I’égalité (x), on obtient le systeéme

DX(t) = 0 Xit) = &y
DY(t) = 0 S YY) = C ,
DZ(t) = 6Z(t) Z(t) = Cseb
ou Cp,Cs,C3 € C. Des lors, vu ce qui précede, le vecteur position de la particule & 'instant ¢ est
donné par
x(t) X(t) 1 2 1 C1
y(t) | = Yit) |=1 0 -1 2 Cs
2(t) Z(t) 1 0 -1 C3eSt
1 2 1
=C; 0 + Co -1 + C5 2 €6t, ounCy,Cy,C3€C
1 0 -1
ou encore

I(t) =C1+2Cy +Cs et
y(t) = —Cy +2C3 bt
Z(t) = Cl - Cg €6t
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3. Un individu vit dans un milieu ou il est susceptible d’attrapper une maladie par
piqire d’insecte. Il peut étre dans I’un des trois états suivants : immunisé (I), malade
(M), non malade et non immunisé (S). D’un mois a ’autre, son état peut changer
selon les régles suivantes :

étant immunisé, il peut le rester avec une probabilité 0,9 ou passer a 1’état S avec
une probabilité 0,1 ;

étant dans ’état S, il peut le rester avec une probabilité 0,5 ou passer a I’état M
avec une probabilité 0,1;

étant malade, il peut le rester avec une probabilité 0,2 ou passer a I’état S avec
une probabilité 0, 8.

Déterminer

a)

b)

la matrice de transition du systéme ;

Solution. Notons respectivement Iy, My et Sy les probabilités qu'un individu soit immunisé,
malade, non malade et non immunisé un jour donné. Le mois suivant, ces probabilités sont
respectivement données par

I, = 0,9Iy+0,45y+0M, L 0,9 0,4 0 I
= 07110+0,5S()+0,8M0 <~ S1 = 0,1 0,5 0,8 So
M, = 0I,+0,1S+0,2M, M, 0 0,1 0,2 M,

=T
Donc, la matrice de transition du systeme est donnée par la matrice T'.

la probabilité qu’un individu immunisé soit encore immunisé aprés deux mois;

Solution. Si un individu est immunisé un jour donné, la probabilité qu’il soit immunisé deux
mois plus tard est de 85%.

la probabilité qu’a long terme, un individu soit immunisé.

Solution. A long terme, la probabilité qu’un individu soit immunisé est donnée par 32/41,
¢’est-a-dire environ 78%.

4. Un biologiste étudie le passage d’une molécule de phosphore dans un écosystéme.
Celle-ci peut se trouver dans le sol, dans I’herbe, dans le bétail ou peut disparaitre de
P’écosystéme. D’une heure a ’autre, le transfert peut s’effectuer selon les modalités
suivantes :

étant dans le sol, la molécule a 3 chances sur 5 d’y rester, 3 chances sur 10 de passer
dans ’herbe et 1 chance sur 10 de disparaitre;

étant dans I’herbe, elle a 1 chance sur 10 de revenir dans le sol, 2 chances sur 5 de
rester dans I’herbe et 1 chance sur 2 de se retrouver dans le bétail ;

étant dans le bétail, elle a 3 chances sur 4 de retourner dans le sol, 1 chance sur 5
de rester dans le bétail et 1 chance sur 20 de disparaitre ;

si la molécule disparait, elle ne réapparait plus nulle part.

Déterminer la matrice de transition du systéeme.

Solution. Notons respectivement Sy, Hy, By et Dy les probabilités qu’une molécule de phosphore se
trouve dans le sol, dans I'herbe, dans le bétail et disparaisse a une heure donnée. L’heure suivante,
ces probabilités sont respectivement données par
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S 3S0/5 + Ho/10 + 3 By/4 + 0 Dy S 3/5 1/10 3/4 0 So

H, 380/10 + 2 Hy/5 + 0 By + 0 Dy H, 3/10 2/5 0 0 Hy

B 0So + Ho/2 + Bo/5 + 0 Dy oI B || o 12 15 o Bo

D, So/10 + 0 Hy + By /20 + 1 Dy D, 110 0 1/20 1 Do
=T

Donc, la matrice de transition du systéeme est donnée par la matrice T

. La cryptographie, pour beaucoup de monde, est un moyen de maintenir des commu-

nications privées. En effet, la protection des communications sensibles a été 1’objectif
principal de la cryptographie dans la grande partie de son histoire. Le chiffrage est la
transformation des données dans une forme illisible. Son but est d’assurer la sécurité
en maintenant 1’information cachée aux gens a qui ’information n’est pas adressée,
meéme ceux qui peuvent voir les données chiffrées. Le déchiffrage est ’inverse du chif-
frage; c’est la transformation des données chiffrées dans une forme intelligible.
Aujourd’hui, les gouvernements emploient des méthodes sophistiquées de codage et de
décodage des messages. Un type de code, qui est extrémement difficile & déchiffrer,
se sert d’une grande matrice pour coder un message. Le récepteur du message le
décode en employant ’inverse de la matrice. Voici un exemple de codage/décodage
d’un message par ce procédé.

Considérons le message

SUIS EN DANGER

(5 3)=e

Pour le codage, on assigne a chaque lettre de I’alphabet un nombre, 4 savoir simple-
ment sa position dans 1’alphabet, c’est-a-dire A correspond a 1, B correspond a 2, ...
, Z correspond a 26. En outre, on assigne le nombre 27 & un espace. Ainsi, le message
devient :

ainsi que la matrice de codage

s U 1 S * E N * D A N G E R
19 21 9 19 27 5 14 27 4 1 14 7 5 18.

Puisqu’on emploie une matrice 2 x 2, on décompose la forme numérique de ce message
en une suite de vecteurs® 1 x 2 :

(19 21), (9 19), (27 5), (14 27), (4 1), (14 7), (5 18).

On code alors le message en multipliant chacun de ces vecteurs par la matrice de
codage C, ce qui peut étre fait en définissant une matrice dont les lignes sont ces
vecteurs et en multipliant cette derniére par C, ce qui nous donne :

19 21 -2 25
9 19 ~10 39
27 5 — 22 -39
14 27 ( s ): ~13 53
4 1 3 -5
14 7 7T
5 18 ~13 44

Deés lors, le message crypté est donné par les lignes de cette derniére matrice que 1’on
place bout a bout pour la transmission :

—2, 25, —10, 39, 22, —39, —13, 53, 3, —5, 7, —7, —13, 44.

8. Dans le cas ou il faut compléter le dernier vecteur, il suffit d’y placer des “27”, ce qui revient & compléter le message
par des espaces pour avoir un nombre de caractéres qui soit multiple de la dimension de la matrice de codage.
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Enfin, pour décoder le message, le récepteur a recours a la méme technique que celle
employée pour le codage mais en utilisant I’inverse de la matrice de codage, qui est

donnée ici par
(3 2
¢ = ( 11

Il doit donc calculer le produit

-2 25 19 21
—-10 39 9 19
22 -39 3 9 27 5
-13 53 ( 11 ) =\| 14 27
3 ) 4 1
7 -7 14 7
—-13 44 5 18

et il retrouve bien la matrice correspondant au message de départ, ce qui lui permet
de lire le message :

19 21 9 19 27 5 14 27 4 1 14 7 5 18
s U 1 s * E N * D A N G E R.

Le Gouvernement a réussi a intercepter le message crypté suivant, provenant de 1’en-
nemi public n°1 et destiné & I’ennemi public n°2 :

—18, —21, —31, 53, 48, 61, 3, —15, —21, —34, —30, —43, 45, 42, 48.
L’un de ses meilleurs espions infiltrés, James Bond, a découvert que la matrice utilisée
par ’ennemi pour coder ce message est la suivante :

-3 -3 —4
0 1 1
4 3 4

Malheureusement, il n’y connait rien en calcul matriciel et personne ne peut déchiffrer
ce message... Votre mission est de décoder ce message dans les plus brefs délais.

Solution. La matrice de décodage est donnée par 'inverse de la matrice de codage, c’est-a-dire la

matrice
1 0 1
4 4 3
-4 -3 -3
Le message est le suivant :
22 9 12 1 9 14 2r 3 21 18 9 5 21 24 27
v 1 L. A1 N * C U R I E U X *

’ Approximations polynomiales

La vitesse v d’une vague est liée a4 sa longueur d’onde )\ et & la profondeur h de l’eau
(exprimées en meétres) par ’expression

9  gA 2mh
= — h _—
v 2m ¢ ( A )’

ou g est I’accélération due a la pesanteur.
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— Sachant que th : z — (e —e™™)/(e” + e~ %), déterminer ’approximation polynomiale &
Pordre 1 en 0 de cette fonction.

— Grace a cette approximation, en sachant que la vague qui a ravagé le Japon en 2011
avait une longueur d’onde de 5 km, & combien peut-on estimer la vitesse du tsunami

lors de son arrivée prés des cOtes (on suppose alors que la profondeur de ’eau est de
2m)?
Solution. - La fonction th : = +— (e —e™%)/(e® + e~ *) est indéfiniment dérivable sur R et sa dérivée
premiere est
4
Dth(z) = ———.
( ) (e;v +e—z)2

Comme th(0) = 0 et Dth(0) = 1, 'approximation polynomiale & I'ordre 1 en 0 de cette fonction est le
polynéme P(z) =z, x € R.

-SiA=5km = 5000m et h = 2 m, alors la valeur de 2wh/\ est proche de 0 et, en utilisant I’ap-
proximation polynomiale ci-dessus, on a

2N@X@:

~ h.
v 2 A g

Ainsi, la vitesse de la vague du tsunami lors de son arrivée prés des cotes était /2. 9,81 = 4,429 m/s.
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LISTE 15 : REVISIONS EN VUE DE L'EXAMEN

I. Description d’ensemble ‘

Décrire analytiquement ’ensemble borné fermé hachuré suivant (les courbes représentées
sont une droite et une parabole) en commencant par ’ensemble de variation des ordonnées
puis, a ordonnée fixée, I’ensemble de variation des abscisses.

Faire de méme en commengant par ’ensemble de variation des abscisses.

Si on commence par I’ensemble de variation des ordonnées, on a
{(z,y) eR* 1y €]l —00,-2], v € 2—y, "} U{(z.y) eR®:y € [-2,1], z € [y*,2 —y]}.
Si on commence par I’ensemble de variation des abscisses, on a
{(z,y) eR*:we[0,1], y € [-Va,Va]} U{(z,y) eR* 1z € [1,4], y € [V, 2 — 2]}

U{(z,y) €R*: 2 € [4, +oo[, y € 2 — x, —Vx]}.

‘II. Fonctions de plusieurs variables ‘

1. On donne la fonction f: (z,y) — In (, / ifi) .

a) Déterminer son domaine de définition, de dérivabilité et les représenter dans un
repere orthonormé.

Solution. Les 2 domaines sont égaux a {(a@y) eR?:z#vy, % +z > 0}

Yy=—-x Y ,y:m

+1

Les points des droites sont exclus de ’ensemble.

b) Déterminer les dérivées partielles de cette fonction et, si possible, les évaluer au
point de coordonnées (—2,1).
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Solution. Les dérivées partielles de la fonction sont données par

—y x
Drf(xvy):xg_yg Dyf(mvy):x2_y2

et, comme le point de coordonnées (—2, 1) appartient au domaine de dérivabilité, on a D, f(—2,1) =
Fet D, f(-2,1) =32
T et D, , T -

. Soit f une fonction continiment dérivable sur | —2,1[x]—4,4[. On demande le domaine

de dérivabilité de la fonction F définie par F(z,y) = f(z+y?, 2% +4y?), sa représentation
graphique ainsi que ’expression des dérivées partielles de F' en fonction de celles de f.

Solution. Le domaine de dérivabilité de F' est I’ensemble
{(z,9) eR*: 2 < +y? < 1, 4 <2® +4y* < 4}).

Il est représenté par I’ensemble des points hachurés ci-dessous, les points des courbres étant exclus
de ’ensemble.

Les dérivées partielles de F' sont données par
(Do F)(z,y) = (Dif) (@ + 9% 2® +4y°) . 1+ (Dof )(a + y?, 2® +4y°) . 20

(DyF)(z,y) = (D1f)(z +y* 2 +49°) . 2y + (D2f)(x + y°,2° + 4%) . 8y.

. Si elles existent, calculer les intégrales suivantes

a) I = /0 ' < /;xsm(;ﬁ)dy) da

1
Solution. Ona I= 1—0(1 — cos(32))

b) I = // eV dz dy si A est I’ensemble fermé borné hachuré ci-dessous
A

Y

Solution. Ona [=-——— —.
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) I // ! dxdy si A = [0, -+oo[x[0, +00]
= —————— 1 1} 1 = |U, +00 , TO0O

A /(1+$2+y2)5 Yy

Solution. Ona I[I= %

+oo 2 e—(y—i—l)a:
d) I = ———dy | d
) /0 (/0 4+y? y) ’

Solution. Ona I= % (111(3) - %111(2) + g)

III. Calcul matriciel ‘

1. Calculer (si elle existe) la matrice inverse de la matrice suivante puis montrer que la
matrice trouvée est bien 1’inverse de la matrice donnée si

-2 2 3
A= 1 -1 0
0 1 4

Solution. Comme detA = 3 # 0, la matrice inverse de A existe et on a

De plus, AA™! = A='A =1 i 1 est la matrice identité de dimension 3.

2. Rechercher les valeurs propres et les vecteurs propres de la matrice suivante. Cette
matrice est-elle diagonalisable? Pourquoi? Si elle I’est, en déterminer une forme
diagonale, ainsi qu’une matrice inversible qui y conduit puis prouver que les matrices
données sont correctes.

3 -2 =2
A= -2 3 =2
-2 -2 3

Solution.  Les valeurs propres de A sont —1 (simple) et 5 (double).
Les vecteurs propres relatifs a la valeur propre double 5 sont les vecteurs

ou ¢ et ¢ sont des complexes non simultanément nuls. Des lors, la matrice A est diagonalisable
puisqu’elle possede 3 vecteurs propres linéairement indépendants.
Les vecteurs propres relatifs a la valeur propre simple —1 sont les vecteurs

1
c|l 1 ou ¢ € Co.
1
Ainsi, on a, par exemple,
1 -1 1 50 0
S = 1 0 1 telque A=8"1'4S=[0 5 0
0 1 1 0 0 -1
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Les matrices données sont correctes puisque

-5 -5 -1
AS =SA = ) 0 -1
0 5 -1

3. Pour inciter les jeunes a faire du sport, une association oblige ses affiliés a pratiquer,
chaque semaine, un sport sur les trois qu’elle propose (jogging, natation, basket).
D’une semaine a 1’autre, les étudiants peuvent changer de choix.

- Ayant choisi le jogging, un étudiant a une chance sur deux d’aller a la piscine et
une chance sur deux de pratiquer le basket la semaine suivante.

- S’il a nagé une semaine, la semaine suivante, il a une chance sur trois de poursuivre
la méme activité, une chance sur trois de faire du jogging et une chance sur trois de
pratiquer le basket.

- Enfin, s’il a joué au basket, il a une chance sur quatre de nager et trois chances sur
quatre de faire du jogging.

(i) Déterminer la matrice de transition.

Solution. Soient By, Jy et Ny respectivement le type de sport (basket, jogging, natation) choisi
pour une semaine fixée au départ et By, J; et N7 respectivement le type de sport choisi la semaine
suivante. On a donc

By 0 1/2 1/3 By
Joo | =134 0 1/3 Jo
N, 1/4 1/2 1/3 No

et la matrice de tansition T est

0 1/2 1/3
T=1|3/4 0 1/3
1/4 1/2 1/3

(ii) Sachant que cette matrice est réguliére, calculer la probabilité qu’a long terme
un étudiant fasse du jogging.

Solution. Puisque T est une matrice réguliere, la situation a long terme est donnée par le vecteur
propre de probabilité de valeur propre 1. Ce vecteur est

12/41
14/41
15/41

et la probabilité qu'un étudiant fasse du jogging & long terme est de 14/41.

IV. Approximations polynomiales ‘

Déterminer 1’approximation polynomiale a I’ordre n =0, 1, 2 et 3 en xy = 0 pour la fonction

xT —T

e

fiaxr—sh(z) = —c

2
Représenter f et ses approximations.

Solution.  Si on note P, (x) 'approximation & 'ordre n en 0, puisque f est infiniment dérivable sur R,

on a
3

Py(x) =0, Pi(z)=P(z)=2 et Py(z)=x+ %, xz €R.
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| y = sh(x)
P=P

IN
T

V. Développement en série de puissances ‘

Déterminer le développement en série de puissances de x la fonction f:x — 1/(1 + 2?).

Le développement en série de puissances de f est donné par

+oo

S (=nma?m, el - 1,1
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