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Année académique 2025-2026 Jacqueline CRASBORN



2



Introduction

Généralités

Ce fascicule fournit aux étudiants les listes d’exercices à résoudre lors des répétitions du cours de
MATHEMATIQUE Math1009 de l’année académique 2025-2026. Il présente aussi la résolution complète
d’exercices de base (listes 2002/2003) et les solutions des exercices des listes 2003/2004 et 2004/2005
couvrant la matière de ce cours s’adressant aux futurs bacheliers de premier bloc en chimie ainsi qu’aux
futurs bacheliers de deuxième bloc en géologie.

Ce fascicule a été rédigé pour répondre à divers objectifs. Il veut fournir aux étudiants une référence
correcte sur laquelle s’appuyer pour tenter de résoudre les exercices proposés au cours des répétitions.

La rédaction de ce fascicule a également pour but d’insister sur le vocabulaire spécifique, les symboles
mathématiques à utiliser, la rigueur exigée dans la rédaction, les liens indispensables qui doivent figurer
entre les différentes étapes d’un développement mathématique. Trop souvent, en corrigeant des interro-
gations par exemple, on peut lire une succession de notations, d’équations, de calculs écrits les uns à côté
des autres sans la moindre indication relative à la logique du raisonnement. C’est cet écueil aussi qu’on
voudrait éviter aux étudiants grâce à ce fascicule.

Une dernière intention, et non la moindre, est d’amener, au plus vite, les étudiants à prendre en charge
leur formation de la façon la plus active et la plus autonome possible.

Pour terminer, je m’en voudrais de ne pas exprimer mes plus vifs remerciements à Françoise Bastin
pour l’accueil qu’elle a réservé à cette initiative, les conseils qu’elle m’a donnés, sa relecture attentive
et la confiance qu’elle me témoigne dans mon travail avec les étudiants. Je remercie également tous les
assistants avec lesquels je travaille, tout spécialement Christine Amory et Christophe Dozot, pour leurs
suggestions constructives et leur participation à l’élaboration de ce fascicule.

Jacqueline Crasborn
Année académique 2025 - 2026

Informations relatives aux répétitions

Compétences à entrâıner

Lors des répétitions, avec l’aide des assistants, il est attendu que les étudiants s’entrâınent aux compétences
suivantes :

1) la communication (orale et écrite)
— structurée (contexte, justifications, conclusion . . . ),
— précise (vocabulaire et symboles adéquats, reflet exact de la pensée . . . ) ;

2) le sens critique (l’exercice a-t-il un sens ? le résultat est-il plausible ? . . . ) ;

3) le raisonnement logique et la compréhension (et non l’application d’une technique de calcul
sans réflexion, par imitation . . . ) ;
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4) l’autonomie
— dans la recherche de pistes ou d’idées par l’utilisation, dans un premier temps, de documents

(syllabus du cours, fascicules intitulés “‘Bases” et “Exercices de base” . . . ) et, éventuellement
dans un second temps, par une demande d’aide auprès de personnes-ressources pour répondre
aux questions ou difficultés rencontrées,

— dans l’organisation et la planification de son travail ;

5) la mâıtrise des connaissances de base des mathématiques comme outil pour les sciences.

Consignes pour préparer une répétition

1. Répondre soigneusement aux questions de théorie de la première partie de chaque liste.

2. Il est vivement conseillé
— de prendre connaissance des exercices à résoudre lors de la répétition future afin de détecter

les difficultés qui pourraient être rencontrées lors de la résolution,
— de dresser alors une liste de questions sur les difficultés rencontrées, questions à poser à l’as-

sistant lors de la répétition

Déroulement des répétitions

1. Dans le cas de notions habituellement non vues dans l’enseignement secondaire ou qui semblent
souvent poser problème aux étudiants, l’assistant résout 1 ou 2 exercices “modèle” pour leur
permettre de se familiariser avec les exercices ayant trait à ces matières ; il fait participer les
étudiants à leur résolution. Ensuite, l’assistant fera une synthèse du processus de résolution en
mentionnant les éléments de théorie utilisés.

2. Enfin, chaque étudiant résout, seul ou avec son voisin, les exercices proposés dans la liste en
cherchant les informations nécessaires dans ses documents. S’il reste bloqué malgré tout, il appelle
alors l’assistant qui l’aidera dans sa recherche.

Tous les exercices de la liste doivent être résolus au plus tard pour la répétition suivante ; la plupart
des étudiants seront obligés d’achever à domicile. Dans ce cas, s’ils rencontrent certaines difficultés, ils
peuvent toujours en parler lors d’une séance de remédiation ou envoyer un courriel à l’un des assistants.

Les solutions des exercices proposés pour les répétitions se trouvent en fin de ce fascicule.

Table des matières des répétitions pour 2025-2026

1. Rappels et calcul matriciel (1).

2. Calcul matriciel (2).

3. Calcul matriciel (3).

4. Fonctions de plusieurs variables (1).

5. Fonctions de plusieurs variables(2).

6. Révisions en vue de l’interrogation (1).

7. Révisions en vue de l’interrogation (2).

8. Fonctions de plusieurs variables (3).

9. Correction de l’interrogation.

10. Fonctions de plusieurs variables (4).

11. Fonctions de plusieurs variables (5).

12. Approximations polynomiales.

13. Développement en séries de puissances.
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14. Mathématiques appliquées.

15. Révisions en vue de l’examen.

Il est possible que ce planning soit légèrement modifié en fonction de l’avancement du
cours théorique. Toute modification sera mentionnée sur la page web du cours dont
l’adresse suit

http ://www.afo.ulg.ac.be/fb/ens.html

Il est donc indispensable de la consulter régulièrement.

L’équipe des assistants
Année académique 2025 - 2026



AVERTISSEMENT

Les listes d’exercices résolus présentées dans ce fascicule sont celles des années académiques
2002/2003, 2003/2004 et 2004/2005. Elles ont été modifiées en fonction de la nouvelle ver-
sion du cours de Mathématique de F. Bastin. Les listes des années suivantes se trouvent
sur la page web relative au cours.

Les exercices des répétitions du cours Mathématique Math1009 pour l’année académique
2025-2026 se trouvent au chapitre 1. Ceux des années 2002/2003, 2003/2004 et 2004/2005
se trouvent dans les chapitres 2 à 4 inclus. Les solutions des exercices des répétitions se
trouvent au chapitre 5.

Jacqueline Crasborn
Année académique 2025 - 2026



Chapitre 1

Listes d’exercices

Liste 1 : rappels et calcul matriciel

A préparer AVANT de venir à la répétition

I. Nombres complexes et résolution d’équations

Bien connâıtre la matière de Math2007 : à réviser si nécessaire.

II. Matrices et opérations

1. Qu’appelle-t-on une matrice ?

2. Qu’appelle-t-on le type (ou le format) et la dimension d’une matrice ?

3. Etant donné une matrice A, définir

(a) sa matrice conjuguée,

(b) sa matrice transposée,

(c) sa matrice adjointe.

4. Définir les opérations suivantes et en donner les propriétés :

(a) addition de deux matrices du même type,

(b) multiplication d’une matrice par un nombre complexe,

(c) multiplication de deux matrices.

A résoudre PENDANT la répétition

(et à achever à domicile si nécessaire)

Lors de la répétition, les exercices I. 2(2-3), II. 1(2-7) et 4(a) seront résolus par l’assistant.

I. Nombres complexes et résolution d’équations

1. Déterminer les partie réelle, imaginaire, le conjugué et le module de chacun des complexes ci-
dessous.

z1 =
i+ 1

i− 1
, z2 = cos(2) + i sin(2), z3 =

(i+ 2)3

2− i
.

1



2 CHAPITRE 1. LISTES D’EXERCICES 2025-2026 MATH1009

2. Résoudre les équations suivantes

(1) z2 + 9 = 0 (2) z3 = 1 (3) z2 + z + 1 = 0.

II. Opérations entre matrices

1. Soient les matrices A, B, C données par

Ã =

 2 i
1 + i −1
3/i (2− i)2

 , B =

 2 0
1 4
i −2

 , C =

(
3 1/(i+ 1)
−2i i/2

)
.

Si possible, effectuer les opérations suivantes (et simplifier la réponse au maximum). Si cela ne
l’est pas, en expliquer la raison.

1) A+B, 2) A+ B̃, 3) A.B, 4) A.B + C, 5) B.A, 6) C.Ã, 7) A∗.C, 8) i.C, 9) (i.A)∗.

2. Soit A une matrice carrée de dimension 3 telle que Aij = 1, ∀i, j et B =

 1 0 0
0 1 0
0 0 0

 . Calculer

C = AB −BA et en déduire la forme de C̃ + C.

3. On donne la matrice A =

(
2 −1
3 0

)
. Montrer que A2 − 2A+ 3 1 = 0.

4. Déterminer la forme générale des matrices qui commutent avec

a) A =

(
0 1
2 0

)
b) B =

(
a 0
0 b

)
(a, b ∈ C)
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Liste 2 : calcul matriciel (2)

A préparer AVANT de venir à la répétition

I. Déterminant et matrice inverse

1. Qu’appelle-t-on le déterminant d’une matrice ? Peut-on toujours le définir ?

2. Citer les propriétés liées aux déterminants.

3. Qu’appelle-t-on matrice inverse d’une matrice carrée donnée ?

4. Quelle est la forme de cette matrice ?

5. Donner une condition nécessaire et suffisante pour que la matrice inverse d’une matrice carrée
donnée existe.

A résoudre PENDANT la répétition
(et à achever à domicile si nécessaire)

Lors de la répétition, les exercices I. 1(A - C - E) et 2(B - C) ainsi que II. (C - D) seront
résolus par l’assistant.

I. Déterminants

1. Calculer le plus rapidement possible le déterminant de chacune des matrices suivantes.

A =
1

3

(
2− i 3i
−1 4

)
, B =

(
1 −2i

(i+ 1)2 5

)
, C =

 −3 1 6
6 2 3
3 1 −6

 ,

D =
1

2

 1 3 −3
3 −3 1
−3 1 3

 , E =

 1 sin2(a) cos2(a)
1 sin2(b) cos2(b)
1 sin2(c) cos2(c)

 (a, b, c ∈ R).

2. Le déterminant de chacune des matrices suivantes est un polynôme en x ∈ C. Factoriser ce po-
lynôme en un produit de facteurs du premier degré.

A =

(
i x+ 2
−x −i

)
, B =

(
x −4
1 x

)
, C =

 x 0 3
0 x+ 1 x
1 0 x− 2

 , D =


0 x 0 0 0
x x 1 1 1
0 1 x 1 1
0 1 1 x 1
0 1 1 1 x

 .
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II. Inversion de matrices

Calculer (si elle existe) la matrice inverse de chacune des matrices suivantes (on donne α ∈ R).

A =

(
0 1
−1 −2

)
, B =

(
2 8
1 4

)
, C =

(
sin(α) cos(α)
cos(α) − sin(α)

)
,

D =

 −1 0 −1
0 −1 1
i 1 0

 , E =

 −1 0 −i
0 −1 1
i 1 0

 .
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Liste 3 : calcul matriciel (3)

A préparer AVANT de venir à la répétition

I. Diagonalisation et matrices stochastiques

1. Etant donné une matrice carrée A,

(a) qu’appelle-t-on valeur propre de A ?

(b) qu’appelle-t-on vecteur propre de A ?

2. En pratique, comment détermine-t-on les valeurs propres et les vecteurs propres d’une matrice
carrée.

3. Qu’appelle-t-on matrice diagonale ?

4. Qu’appelle-t-on matrice diagonalisable ?

5. Donner une condition nécessaire et suffisante pour qu’une matrice soit diagonalisable.

6. Qu’appelle-t-on matrice stochastique ?

7. Qu’appelle-t-on vecteur de probabilité ?

A résoudre PENDANT la répétition
(et à achever à domicile si nécessaire)

Lors de la répétition, les exercices I. 2(C) et II. 1 seront résolus par l’assistant.

I. Diagonalisation

1. Déterminer les valeurs propres des matrices suivantes et en donner la multiplicité.

A =

(
i −i
i i

)
, B =

 2 1 10
0 3 5
0 0 2

 , C =

 1 3 0
3 −2 −1
0 −1 1

 .

2. Rechercher les valeurs propres et les vecteurs propres des matrices suivantes. Ces matrices sont-
elles diagonalisables ? Pourquoi ? Si elles le sont, en déterminer une forme diagonale ∆, ainsi qu’une
matrice inversible S qui y conduit.

A =

(
2 3
4 1

)
, B =

 −1 0 0
1 1 0
−2 0 −1

 , C =

 −1 0 0
1 1 0
0 0 −1

 , D =

 1 3 0
3 −2 −1
0 −1 1

 .

Calculer les produits AS et S∆. Comparer les matrices obtenues. N’aurait-on pas pu prévoir ce
resultat sans effectuer les calculs ? Pourquoi ?

3. Une matrice carrée A de dimension 2 possède les deux valeurs propres 1 et -1, auxquelles peuvent

être associés respectivement les vecteurs propres

(
2
2

)
et

(
1
−1

)
. Que vaut A ?
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II. Divers

1. L’institut météorologique a fait les observations suivantes :
— on n’a jamais vu deux jours ensoleillés consécutifs,
— s’il fait beau un jour donné, on a une chance égale d’avoir de la pluie ou de la neige le lendemain,
— s’il pleut ou s’il neige, on a une chance sur deux que le temps se maintienne le jour suivant et

une chance sur quatre qu’il fasse beau le lendemain.
Sachant cela,

(a) Représenter la matrice de transition de ce système.

(b) Sachant qu’il fait beau aujourd’hui, quel pourcentage de chance a-t-on qu’il fasse beau dans
deux jours ?

(c) A long terme, quelle sera l’évolution du climat ?

2. Dans un laboratoire, à chaque repas, des lapins ont le choix entre manger des carottes, de la salade
ou des pissenlits mais ne peuvent manger qu’un aliment d’une seule catégorie lors d’un même
repas. Comme ils sont gourmands, ils ne manquent jamais un repas.
L’observation montre que si un lapin a mangé des carottes à un repas, il en mangera au repas
suivant dans 70 % des cas ; sinon, il mangera de la salade une fois sur 5 ou des pissenlits 1 fois sur
10.
S’il a mangé de la salade, il en mangera encore 6 fois sur 10 au repas suivant ; sinon, il mangera
un des deux autres aliments de façon équiprobable.
Enfin, s’il a mangé des pissenlits, au repas suivant il y a 1 chance sur 5 qu’il mange des carottes
et 2 chances sur 5 de la salade.

(a) Si un lapin vient de manger des carottes, quelle est la probabilité qu’il mange de la salade dans
deux repas ?

(b) A longue échéance, que mange ce lapin ?

3. En algèbre linéaire (ou géométrie analytique), une rotation du plan (d’angle θ) est représentée par
une matrice du type

Mθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
où θ est un réel (et représente la mesure de l’angle de la rotation).
— Pour tout θ, déterminer la matrice produit M2

θ et en simplifier les éléments au maximum.
— Montrer que quels que soient θ, θ′, les matrices Mθ et Mθ′ commutent. Qu’est-ce que cela

signifie en termes de rotations ?
— Montrer que quel que soit le réel θ, la matrice(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
est aussi une matrice qui représente une rotation.

4. Vrai ou faux (Justifier)

(a) Toute matrice carrée de dimension 3 commute avec

 1 0 0
0 1 0
0 0 0

.

(b) La matrice

(
a− b a2 − ab+ b2

a2 − b2 a3 − b3
)

(a, b ∈ C) est inversible.

(c) Si une matrice carrée A de dimension 2 est de déterminant nul, alors l’une des colonnes de A
est multiple de l’autre.

(d) Si deux lignes d’une matrice carrée A de dimension 3 sont identiques, alors detA = 0.

(e) Si A est une matrice carrée de dimension 3, alors det(5A) = 5 detA.

(f) Si B est la matrice obtenue en multipliant la ligne 3 d’une matrice carrée A de dimension 3
par 5, alors detB = 5 detA.



7

Liste 4 : fonctions de plusieurs variables (1)

A préparer AVANT de venir à la répétition

I. Définitions et représentations graphiques

Qu’appelle-t-on

1. domaine de définition d’une fonction de 2 variables ?

2. courbe de niveau d’une fonction de 2 variables ?

3. surface quadrique ? Quelles sont les différentes quadriques ?

II. Dérivation et gradient

1. Quand dit-on qu’une fonction de 2 variables est dérivable par rapport à sa première (resp. deuxième)
variable en un point de coordonnées (x0, y0) d’un ouvert où elle est définie ?

2. Qu’appelle-t-on dérivée partielle d’une fonction de deux variables ?

3. Définir le gradient d’une fonction de plusieurs variables.

Préambule

Les fonctions de plusieurs variables apparaissent tout naturellement dans de nombreux domaines.
Ainsi, par exemple, la distance d’un point de l’espace (muni d’un repère orthonormé) à l’origine s’exprime
par

d(x, y, z) =
√
x2 + y2 + z2

si x, y, z sont les coordonnées du point, la loi des gaz parfaits

pV = nRT

(où p est la pression du gaz (en pascal), V est le volume occupé par le gaz (en mètre cube), n est la
quantité de matière (en mole), R est la constante universelle des gaz parfaits et T est la température
absolue (en kelvin)) permet d’exprimer la pression (par exemple) en fonction des autres paramètres, . . .

Les exemples sont nombreux et la bonne manipulation (expression d’une variable ou d’un paramètre
en fonction des autres, dérivation, intégration, . . . ) de ces fonctions est indispensable pour bien utiliser
les modèles de divers phénomènes (physiques, chimiques, biologiques, . . . )
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A résoudre PENDANT la répétition

(et à achever à domicile si nécessaire)

Lors de la répétition, les exercices I. 1(g) - 2(b) ainsi que II. 2(h) - 5(c) - 8 et 10 seront
résolus par l’assistant.

I. Définitions et représentations graphiques

1. Déterminer le domaine de définition des fonctions données explicitement ci-dessous et le représenter.

f(x, y) = ln

(
y2

4
− x2 + 1

)
, g(x, y) =

√
2x− y, h(x, y) = arcos(xy).

2. Dans chacun des cas suivants, représenter les courbes de niveau d’équation f(x, y) = c si
a) f(x, y) = 4x− y et c = −2, 4
b) f(x, y) = x2 − y2 et c = −1, 0, 1
c) f(x, y) = x2 − y et c = −2, 1

3. On se place dans l’espace muni d’un repère orthonormé ; on appelle X,Y, Z les trois axes de celui-
ci.
a) Quelle est la nature de la surface quadrique d’équation cartésienne x2 + y2 − 4z2 = 1 ?
b) Représenter la trace de la surface d’équation cartésienne x2+y2−4z2 = 1 dans le plan d’équation
z = 0 puis dans celui d’équation x = 0. Comment appelle-t-on chacune de ces courbes ?

4. Esquisser les représentations graphiques des surfaces quadriques dont les équations cartésiennes
sont

a)
x2

4
+ y2 +

z2

9
= 1 b)x2 + y2 = 4.

II. Dérivation et gradient

1. En appliquant la définition des dérivées, montrer que la fonction f donnée explicitement par
f(x, y) = 3x2 + xy, (x, y) ∈ R2 est dérivable par rapport à sa première variable au point (−1, 2)
et donner la valeur de cette dérivée partielle en ce point.

2. On donne les fonctions f , g et h par

f(x, y) = ln(x2 − 4 + y), g(x, y) = cos(x2y2 + 4y) et h(x, y) = x2 e−x/y.

a) Déterminer leur domaine de définition, de dérivabilité et les représenter dans un repère ortho-
normé.
b) Déterminer les dérivées partielles de ces fonctions.

3. On donne la fonction f par f(x, y) = ln(
√
x2 + 4y2).

a) Déterminer son domaine de définition et d’infinie dérivabilité.
b) Dans le domaine d’infinie dérivabilité, calculer D2

xf +D2
yf .

4. a) Déterminer le gradient de la fonction f donnée par f(x1, x2, x3) = x2
1 x2 sin(3x3).

b) Même question pour la fonction g donnée par g(x, y, z) = x2exy
2√z.

5. On donne les fonctions f et g respectivement par

f(x, y) = arcsin (y/x) g(x, y) = exp(
√
x+ y2 + 1).
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a) Déterminer le domaine de définition A et d’infinie dérivabilité B de ces fonctions. Représenter
ces domaines.
b) Déterminer l’expression explicite de |x|Dxf(x, y) + |y|Dyf(x, y).
c) Déterminer l’expression explicite de F (t) = f (1/t, t), le domaine de dérivabilité de cette fonc-
tion et l’expression explicite de sa dérivée.
d) Déterminer l’expression explicite de G(t) = g(sin2(t), cos(t)), le domaine de dérivabilité de cette
fonction et l’expression explicite de sa dérivée.

6. On donne la fonction f(x, y) =
√
x2 + y2.

a) Déterminer son domaine de définition A et celui d’infinie dérivabilité B.
b) Si on définit F par F (x, y) = f(x, y)(D2

xf(x, y) + D2
yf(x, y)), (x, y) ∈ B, montrer que F est

une fonction constante et déterminer cette constante.

7. On considère la fonction fr(x, y) = xre−y/x, r étant un réel.
a) Déterminer son domaine de définition A et celui d’infinie dérivabilité B.
b) Déterminer le réel r tel que Dxfr(x, y) = yD2

yfr(x, y) +Dyfr(x, y), (x, y) ∈ B.

8. On donne la fonction f(x, y) = sin(ax) cos(by) où a et b sont des constantes réelles non nulles.
Montrer que f vérifie l’équation des ondes D2

xf − (a2/b2)D2
yf = 0.

9. L’expérience montre que, dans un champ de température, la chaleur s’écoule dans la direction et
le sens dans lesquels la température décrôıt le plus vite. Trouver cette direction et ce sens en tout
point du champ puis en un point P donné dans les cas suivants :
a) T (x, y) = x2 − y2 et P a pour coordonnées (2, 1)
b) T (x, y) = arctan (y/x) et P a pour coordonnées (2, 2)
Esquisser l’isotherme correspondant à la valeur 3 dans le premier cas et à π/4 dans le second ainsi
que les vecteurs qui correspondent à la direction et au sens obtenus au point P .

10. On donne la fonction f explicitement par

f(x, y) = arcos(1− 2xy).

(a) Déterminer le domaine d’infinie dérivabilité de cette fonction.
(b) Dans un repère orthonormé, représenter ce domaine en le hachurant.
(c) Calculer l’expression suivante en tout point de ce domaine et la simplifier au maximum.

xDxf(x, y)− yDyf(x, y)

11. On donne la fonction f explicitement par

f(x, y) = ln (x2 − y2)− ln (y).

(a) Déterminer le domaine d’infinie dérivabilité de cette fonction.
(b) Dans un repère orthonormé, représenter ce domaine en le hachurant.
(c) Calculer l’expression suivante en tout point de ce domaine et la simplifier au maximum.

xDxf(x, y) + yDyf(x, y)
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Liste 5 : fonctions de plusieurs variables (2)

A préparer AVANT de venir à la répétition

I. Dérivation des fonctions composées

1. Qu’appelle-t-on fonction composée ?

2. Quel est l’énoncé du théorème donnant les dérivées partielles d’une fonction composée à partir des
dérivées partielles des fonctions de départ ?

II. Description d’ensembles

Revoir les exemples du cours.

A résoudre PENDANT la répétition

(et à achever à domicile si nécessaire)

Lors de la répétition, les exercices I. 1(a) - 4 et 5(a) ainsi que II. 1(a) - 4(a) et 6(A) seront
résolus par l’assistant.

I. Dérivation des fonctions composées

1. a) On donne f , continûment dérivable sur ]−2, 4[×]−5, 5[. On demande le domaine de dérivabilité
de la fonction F définie par F (x, y) = f(x + 2y, 2x − 5y), sa représentation graphique ainsi que
l’expression des dérivées partielles de F en fonction de celles de f .
b) Même question pour g, fonction continûment dérivable sur]0, 1[×] ln (π/3) ,+∞[ et G(x, y) =
g(exp(x), ln(arcos(y))).

2. On donne la fonction g continûment dérivable sur ]− π/2, π/6[×]0,+∞[×]0, 10/9[.

a) Déterminer le domaine de dérivabilité de f : t 7→ f(t) = g(arcsin(2t), 1/
√
t+ 1, t2 + 1).

b) Calculer la dérivée de f en fonction des dérivées partielles de g.
c) Si elle est définie, que vaut cette dérivée en 0 ? en 1/3 ?
d) Mêmes questions si g est continûment dérivable sur ]− π/6, π/3[×]

√
2,+∞[×]0, 3[.

3. Soit F (t) = f(x(t), y(t)) avec x(3) = 2, y(3) = 7, (Dx)(3) = 5, (Dy)(3) = −4, (D1f)(2, 7) = 6 et
(D2f)(2, 7) = −8. En supposant satisfaites les hypothèses du théorème de dérivation des fonctions
composées en 3, que vaut (DF)(3) ?

4. Soit F (s, t) = f(u(s, t), v(s, t)). En supposant satisfaites les hypothèses du théorème de dérivation
des fonctions composées en(1, 0) si

u(1, 0) = 2 (Dsu)(1, 0) = −2 (Dtu)(1, 0) = 6

v(1, 0) = 3 (Dsv)(1, 0) = 5 (Dtv)(1, 0) = 4

et (Duf)(2, 3) = −1 et (Dvf)(2, 3) = 10, calculer (DsF )(1, 0) et (DtF )(1, 0).
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5. (a) Soient

f ∈ C1(]0, 1[×]−∞, 0[) et F (t) = f

(
ln

(
t− 1

2

)
, t2 + t− 6

)
.

Où la fonction F est-elle dérivable ?
Quelle est l’expression de sa dérivée en fonction des dérivées partielles de f ?
(b) Même question pour

f ∈ C1(]0,+∞[×]0,+∞[) et F (x) = f(e−x − 1, ln(5− x2)).

6. On donne la fonction (x, y) 7→ f(x, y) définie et 2 fois continûment dérivable sur R2 \ {(0, 0)}. On
effectue le changement de variables en coordonnées polaires x = r cos(θ), y = r sin(θ) (r > 0 et θ ∈
[0, 2π[) et on considère F (r, θ) = f(r cos(θ), r sin(θ)).

Montrer que (Dxf)2 + (Dyf)2 = (DrF )2 +
1

r2
(DθF )2

Remarque : le premier membre est pris au point de coordonnées (r cos(θ), r sin(θ)) et le second en
(r, θ).

II. Représentation d’ensembles

1. Dans un repère orthonormé du plan, représenter, en le hachurant, l’ensemble dont une description
analytique est la suivante

a) A = {(x, y) ∈ R2 : 0 ≤ y ≤ inf{x,
√

1− x2}}
b) B = {(x, y) ∈ R2 : x ≥ 0, 0 ≤ y ≤ x2}
c) C = {(x, y) ∈ R2 : x ≥ y, y ∈ [0, 1]}

2. Décrire analytiquement les ensembles hachurés suivants, les points des bords étant compris dans
l’ensemble, en donnant d’abord
a) l’ensemble de variation des abscisses
b) l’ensemble de variation des ordonnées.

-
X

6
Y

−4 1

−3

1A

-
X

6Y

−1 1

1

2
B

-1 1 2 3 4 5 6

-3

-2

-1

1

2

3

-
X

6Y

C

3. Dans un repère orthonormé, représenter graphiquement les ensembles A et B si

A = {(x, y) ∈ R2 : x ≥ 0, x−2 ≤ y ≤ 2, x2+y2 ≥ 4} B = {(x, y) ∈ R2 : x ≥ 1, 1/x ≤ y ≤
√
x}.

Pour chacun de ces 2 ensembles,
a) déterminer leur ensemble X (respectivement Y ) de variation des abscisses (resp. des ordonnées)
b) à abscisse (resp. ordonnée) fixée dans X (resp. Y ) donner l’ensemble de variation des ordonnées
(resp. des abscisses) de leurs points
c) donner 2 descriptions analytiques en se servant des 2 items précédents.

4. Décrire analytiquement l’ensemble borné fermé hachuré suivant en commençant par l’ensemble de
variation des ordonnées puis, à ordonnée fixée, l’ensemble de variation des abscisses.
Faire de même en commençant par l’ensemble de variation des abscisses.
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a)

b)

c)

5. On donne l’ensemble B suivant. Représenter graphiquement celui-ci en le hachurant.

B = {(x, y) ∈ R2 : x ∈ [0, 2π], sin(2x) ≤ y ≤ sin(x)}.

6. En utilisant les coordonnées polaires, décrire analytiquement les ensembles hachurés suivants, les
points des bords étant compris dans A mais non dans B.

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-
X

6Yy = −x

�
�
��

�
�
�

�
��
�
�

A

-2 -1 1 2

-2

-1

1

2

-
X

6Y

y =
√

3x/3

B

7. Dans un repère orthonormé du plan, représenter, en le hachurant, l’ensemble dont une description
analytique est

E = {(x, y) ∈ R2 : −1 < x < 0, y > 0, x2 + y2 > 1}.

Ensuite, décrire analytiquement cet ensemble en utilisant les coordonnées polaires.
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Liste 6 : révisions en vue de l’interrogation
du 31 mars 2026

Liste à établir en fonction de la matière prévue pour l’interrogation

Liste 7 : révisions en vue de l’interrogation
du 31 mars 2026

Liste à établir en fonction de la matière prévue pour l’interrogation
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Liste 8 : fonctions de plusieurs variables (3)

A préparer AVANT de venir à la répétition

I. Permutation de l’ordre d’intégration

Qu’appelle-t-on � permutation de l’ordre d’intégration � dans le calcul des intégrales doubles ? Peut-on
toujours le faire sans changer la valeur du résultat si on intègre sur un ensemble fermé borné ?

II. Intégration sur des ensembles fermés bornés

Quand une fonction de 2 variables est-elle intégrable sur un ensemble fermé borné ?

A résoudre PENDANT la répétition

(et à achever à domicile si nécessaire)

Lors de la répétition, les exercices I. 1(a), II. 2(b) et 3(b) seront résolus par l’assistant.

I. Permutation de l’ordre d’intégration

1. Supposons que la fonction f est intégrable sur l’ensemble considéré. Permuter les intégrales et
représenter l’ensemble d’intégration dans les cas suivants

a)

∫ 1

−1

(∫ 2−y

y−2

f(x, y) dx

)
dy b)

∫ 3

0

(∫ √18−y2

y

f(x, y) dx

)
dy.

2. On considère une fonction f intégrable sur l’ensemble hachuré fermé borné A ci-dessous. Ecrire,
dans un ordre et dans l’autre, l’intégrale∫∫

A

f(x, y)dx dy.

-
X

6
Y

1 3

1

3

�
�
�
�

II. Intégration sur des ensembles fermés bornés

1. Dans le plan, on considère l’ensemble borné fermé A délimité par le graphique de la droite
d’équation cartésienne x+ y = 0 et celui de la fonction x 7→ −x2.
a) Représenter A dans un repère orthonormé et en donner une expression analytique.
b) Calculer, si elle existe, l’intégrale de f sur A si f : (x, y) 7→ f(x, y) = x cos(y).

2. Si elle existe, calculer l’intégrale de
a) f(x, y) = 4 + x2 sur A = {(x, y) ∈ R2 : x ∈ [−2, 2], y ∈ [1 + x2, 9− x2]}
b) f(x, y) = cos(y2) sur A = {(x, y) ∈ R2 : x ∈ [−1, 0], y ∈ [−x, 1]}
c) f(x, y) = y2 cos(xy) sur A = [π/2, π]× [−1, 1]
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3. Si elle existe, déterminer la valeur de l’intégrale sur l’ensemble A borné fermé hachuré ci-dessous
dans les cas suivants

a)
∫∫
A
ex−y dx dy

-
X

6Y

−2 1

1

b)
∫∫
A
xy dx dy

-
X

6Y

−1 1 2

1

c)

∫∫
A

y√
1 + x2

dx dy

1 2 3 4 5 6

0.5

1.0

1.5

2.0

2.5

-

X

6Y

x = 4

y =
√
x

4. Soit I =

∫ 3
√
π

0

(∫ 3√
π2

y2
cos(
√
x3) dx

)
dy.

Représenter l’ensemble d’intégration et calculer l’intégrale si c’est possible.
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Liste 9 : correction de l’interrogation
du 31 mars 2026
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Liste 10 : fonctions de plusieurs variables (4)

A préparer AVANT de venir à la répétition

I. Intégration sur des ensembles non fermés bornés

1. Si une fonction est continue sur un ensemble A non fermé borné parallèle à l’axe Y , quand dit-on
qu’elle est intégrable sur A ? Comment définit-on alors son intégrale ?

2. Même question si l’ensemble A est parallèle à l’axe X.

3. Si une fonction est continue sur un ensemble A non fermé borné, quand peut-on permuter l’ordre
d’intégration sans changer la valeur de l’intégrale ?

A résoudre PENDANT la répétition

(et à achever à domicile si nécessaire)

Lors de la répétition, les exercices I. 2(b) et 4 seront résolus par l’assistant.

I. Intégration sur des ensembles non fermés bornés

1. Si elles ont un sens, calculer les intégrales suivantes et représenter l’ensemble d’intégration.

a)

∫∫
A

1

x
dx dy avec A = {(x, y) ∈ R2 : x ≥ 1, 0 ≤ y ≤ 1/x}

b)

∫ 1

−∞

(∫ +∞

0

ey−3x dx

)
dy

c)

∫∫
A

e−y
2

dx dy avec A = {(x, y) ∈ R2 : 0 ≤ x ≤ y}

d)

∫∫
A

x3 e−x
2y dx dy avec A = {(x, y) ∈ R2 : x > 0, 1 ≤ xy}

2. Déterminer si les intégrales suivantes existent ; si oui, les calculer. Représenter géométriquement
l’ensemble d’intégration dans chaque cas.

a)

∫ +∞

0

(∫ y2

0

ye−y
2

x+ y2
dx

)
dy, b)

∫ 1

0

(∫ +∞

x

√
x

x2 + y2
dy

)
dx, c)

∫ 1

0

(∫ x2

0

1

x+ y
dy

)
dx

3. On considère l’intégrale double suivante

I =

∫ +∞

0

(∫ x

0

cos(y − x)e−x dy

)
dx

a) Permuter l’ordre d’intégration et représenter l’ensemble d’intégration dans un repère ortho-
normé.
b) Si elle existe, déterminer la valeur de cette succession d’intégrales dans un ordre et dans l’autre.
c) Trouve-t-on la même valeur quel que soit l’ordre d’intégration ? Pouvait-on le prévoir sans cal-
culer les 2 intégrales ?
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4. Calculer l’intégrale de f : (x, y) 7→ f(x, y) = x−y sur l’ensemble fermé hachuré suivant (et donner
une description analytique de cet ensemble)

0 1 2 3 4−1−2

0

1

2

3

4

−1

-
X

6
Yy = e−x
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Liste 11 : fonctions de plusieurs variables (5)

A préparer AVANT de venir à la répétition

I. Intégration par changement de variables polaires

1. Que vaut le jacobien dans le cas d’un changement de variables polaires ?

2. Donner la formule d’intégration par changement de variables polaires dans le cas d’une fonction
continue sur un ensemble fermé borné.

A résoudre PENDANT la répétition

(et à achever à domicile si nécessaire)

Lors de la répétition, l’exercice I. 1(b) sera résolu par l’assistant.

I. Intégration par changement de variables polaires

1. Si elle existe, calculer

a)

∫∫
A

√
x2 + y2 dx dy où A est l’ensemble hachuré ci-dessous.

b)

∫∫
B

xy dx dy où B est l’ensemble hachuré ci-dessous.

c)

∫∫
C

(2x+ y) dx dy où C = {(x, y) ∈ R2 : 0 ≤ y ≤ inf{−x,
√

1− x2}}.

-2 -1 1 2

0.5

1.0

1.5

2.0

-
X

6
Yy = −x y = xA

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-
X

6Yy = −x

�
�
��

�
�
�

�
��
�
�

B

2. Soit A une partie du plan (bornée et fermée). Le centre de masse de A (considéré homogène) est
défini comme le point de coordonnées (xA, yA) où

xA = s−1

∫∫
A

x dx dy, yA = s−1

∫∫
A

y dx dy

et où s est l’aire de la surface A.
Déterminer la position du centre de masse d’une plaque homogène dont la forme est un tiers de
cercle de rayon R (R réel strictement positif).



20 CHAPITRE 1. LISTES D’EXERCICES 2025-2026 MATH1009

II. Divers

La masse d’une plaque plane est donnée par

m =

∫∫
R

δ(x, y)dxdy,

où δ(x, y) est la densité au point de coordonnées (x, y). Considérons une plaque plane de la forme d’un
triangle isocèle rectangle R dont les côtés égaux mesurent 4 m. Si la densité en un point P est directement
proportionnelle au carré de la distance de P au sommet opposé à l’hypoténuse 1, si l’on place l’origine
du repère sur ce sommet et si les axes OX et OY sont les prolongations des côtés de même longueur du
triangle R,

a) quelle est la masse de cette plaque ?
b) en quelles unités s’exprime la constante K ?

1 2 3 4 5
x

1

2

3

4

y

1. c’est-à-dire δ(x, y) = K(x2 + y2) (où K est une constante)
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Liste 12 : approximations polynomiales

A préparer AVANT de venir à la répétition

I. Approximations polynomiales

1. Qu’appelle-t-on approximation polynomiale d’une fonction en un point de son domaine de définition ?

2. Quelle forme cette approximation a-t-elle quand la fonction est suffisamment dérivable ?

3. (a) Enoncer le résultat appelé “Développement limité de Taylor”.

(b) Relier ce résultat aux notions d’approximation polynomiale et de reste de l’approximation
polynomiale d’une fonction en un point.

Préambule

*****
A quoi peuvent servir ces approximations ?

*****

Le théorème des accroissements finis pour une fonction dérivable sur un intervalle ouvert I de R
s’exprime de la manière suivante : quels que soient les réels a et x de cet intervalle, il en existe un autre
(notons-le ξ) situé entre a et x, tel que la valeur de la fonction en x s’exprime à partir de sa valeur en a
suivant l’égalité suivante

f(x) = f(a) + (x− a)Df(ξ).

Ceci peut s’interpréter en disant que l’erreur commise en approchant la valeur de f en x par sa valeur en
a est proportionnelle à l’écart entre les deux points (a et x) et à la dérivée de la fonction f calculée en
un réel intermédiaire entre a et x.

Lorsque la fonction est plus régulière, ce résultat peut être étendu de la manière suivante (c’est ce que
l’on appelle le développement limité de Taylor). Si f est p fois dérivable dans I, alors quels que soient les
réels a et x de cet intervalle, il en existe un autre (notons-le ξ) situé entre a et x, tel que la valeur de la
fonction en x s’exprime à partir des valeurs en a de ses p− 1 premières dérivées suivant l’égalité suivante

f(x) = f(a) + (x− a)Df(a) + . . .+
(x− a)p−1

(p− 1)!
Dp−1f(a) +

(x− a)p

p!
Dpf(ξ).

La fonction P définie par

P (t) = f(a) + (t− a)Df(a) + . . .+
(t− a)p−1

(p− 1)!
Dp−1f(a), t ∈ R

est un polynôme de degré au plus p − 1 en la variable t. Le développement limité de Taylor ci-dessus
s’écrit ainsi

f(x) = P (x) +
(x− a)p

p!
Dpf(ξ)

et nous dit que la valeur de f en x est approchée par la valeur en x de ce polynôme, l’erreur commise
étant proportionnelle à l’écart entre la pe puissance de l’écart entre a et x et à la dérivée d’ordre p de la
fonction f calculée en un réel intermédiaire entre a et x.

Si a est fixé et que la dérivée d’ordre p de f est continue en a, alors on en déduit que

lim
x→a

f(x)− P (x)

(x− a)p
= 0.

Ceci exprime de façon précise la manière dont le polynôme approche la fonction au voisinage de a. Voir
cours pour plus de détails.
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Ce genre de résultat est très utile quand il s’agit d’obtenir une estimation de grandeurs physiques.
Ainsi par exemple, la force de marée agissant sur une masse m peut être définie comme la différence

de l’attraction de la Lune sur cette masse située à la surface de la Terre et de l’attraction de la Lune sur
cette masse en supposant qu’elle est au centre de la Terre. Si on désigne par R le rayon terrestre, d la
distance 2 Terre-Lune, G la constante de gravité, M la masse de la Lune, on peut alors écrire

F =
GMm

(d−R)2
− GMm

d2

en un point de la surface terrestre situé sur la droite joignant le centre de la Terre et le centre de la Lune.
En tenant compte du fait que le rapport R/d est petit, une expression approximative (simplifiée) de la
force F est donnée par

FApprox =
2GMmR

d3
.

Exercice après lecture du préambule

Expliquer pourquoi une approximation de F est donnée par l’expression précédente.

A résoudre PENDANT la répétition
(et à achever à domicile si nécessaire)

Lors de la répétition, les exercices I. 1 (f2, f3, f5) - 2 (b) - 3 seront résolus par l’assistant.

I. Approximations polynomiales

1. Dans chacun des cas suivants, déterminer l’approximation polynomiale à l’ordre n en x0 pour la
fonction fk. Représenter f2 ( —-ou f3 ou f5— ) et ses approximations. Pour f5,
a) donner une expression explicite du reste de ces approximations.
b) indiquer où se situe le graphique de f5 au voisinage de 0 par rapport à celui de chacune des
approximations en tenant compte du point précédent.

f1(x) = cos(x) e3x, x0 = 0, n = 0, 1, 2, 3 f2(x) =
√

1 + 9x, x0 = 0, n = 0, 1, 2
f3(x) = 1/(1− 2x), x0 = 0, n = 0, 1, 2 f4(x) = arctan(x), x0 = 0 (resp. x0 = 1), n = 0, 1, 2
f5(x) = cos2(x), x0 = 0, n = 0, 1, 2 f6(x) = sin(x), x0 = 1, n = 0, 1, 2

2. a) Déterminer l’approximation polynomiale à l’ordre 3 en 0 de la fonction cos et en estimer le
reste. Représenter la fonction et cette approximation dans le même repère orthonormé.

b) Déterminer l’approximation polynomiale en 0 à l’ordre 1, 2 et 3 de la fonction f(x) = x sin(x), x ∈
R. Représenter graphiquement ces approximations dans le même repère orthonormé que celui où
f est représenté (cf ci-dessous), en justifiant les positions relatives des courbes.
(Suggestion : | sin(x)| ≤ |x| ∀x ∈ R)

-6 -4 -2 2 4 6
X

-5

-4

-3

-2

-1

1

2

3

Y

-

6 y = x sin(x)

2. entre les centres respectifs
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3. Un professeur de mathématique lance un défi à ses élèves. Le premier qui donnera une approxi-
mation du nombre e avec les 3 premières décimales exactes et pourra expliquer sa méthode aux
autres sera dispensé de la prochaine interrogation. Pour relever le défi, les élèves, restés en classe,
n’ont droit qu’à une feuille et un crayon. Ils sont sans accès à internet et ne peuvent utiliser ni
gsm, ni calculatrice ...

Comment peuvent-ils procéder ?

4. Déterminer l’approximation polynomiale à l’ordre 0, 1, 2, 3 en 0 des fonctions données par 3

g1(x) = ln

(
1− x
x+ 1

)
, g2(x) =

−x+ 2

2x2 + x− 1
.

5. Un tunnel d’une longueur l relie deux points de la surface de la Terre. Si R désigne le rayon de la
Terre, déterminer une approximation de la profondeur maximale p de ce tunnel.

R

6?
p

-�
l

3. Suggestion. Utiliser le développement de ln(1 + x) et ln(1 − x) pour g1 et décomposer en fractions simples pour g2
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Liste 13 : développements en séries de puissances

A préparer AVANT de venir à la répétition

Définitions et propriétés

1. Qu’appelle-t-on série de puissances ?

2. Quand une série de puissances converge-t-elle
a) dans un intervalle ?
b) en tout réel ?

3. Quand et où une série de puissances est-elle dérivable ? Dans ce cas, qu’appelle-t-on dérivation
� terme à terme � ?

A résoudre PENDANT la répétition
(et à achever à domicile si nécessaire)

Lors de la répétition, les exercices 2 (f1, f7 et f8) seront résolus par l’assistant.

Développements en série de puissances

1. Si possible, développer les fonctions suivantes (données explicitement) en série de puissances de x
au voisinage de 0

f1(x) =
x− 1

x+ 1
, f2(x) =

−3x+ 2

2x2 − 3x+ 1
.

2. Déterminer le développement en série de puissances de x des fonctions suivantes

f1(x) = x3 exp(−x), x ∈ R f2(x) = ch(x) =
ex + e−x

2
, x ∈ R

f3(x) = sh(x) =
ex − e−x

2
, x ∈ R 4 f4(x) = cos(x), x ∈ R

f5(x) = sin(x), x ∈ R f6(x) = ln(1 + x), x ∈]− 1, 1[

f7(x) = ln

(
1 + x

1− x

)
, x ∈]− 1, 1[ f8(x) = arctan(x), x ∈ R

4. Les fonctions ch et sh sont appelées respectivement cosinus et sinus hyperboliques
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Liste 14 : Mathématiques appliquées

Préambule

Les exercices de cette liste montrent des applications de notions mathématiques étudiées dans le cadre
du cours de Mathématiques générales. Ces applications relèvent de la physique, de la biologie, du calcul
des probabilités, de la géographie et même de la cryptographie.

A résoudre PENDANT la répétition
(et à achever à domicile si nécessaire)

Fonctions de plusieurs variables

1. En thermodynamique, il existe essentiellement 3 types d’équilibres macroscopiques : l’équilibre
thermique, l’équilibre mécanique et l’équilibre osmotique (mélange homogène 5). Dès lors, par
définition, un équilibre thermodynamique est atteint lorsque ces 3 équilibres sont réunis.
Selon le premier postulat de la thermodynamique, l’équilibre thermodynamique d’un système phy-
sique se définit à l’aide de 3 paramètres : l’énergie interne U , le volume V et le nombre de particules
N du système.
Le second postulat stipule qu’il existe une fonction S, dépendant de U , V et N , qui est maximale à
l’équilibre thermodynamique. Cette fonction est appelée entropie du système et la connâıtre, c’est
connâıtre l’ensemble du système. Cette fonction permet de plus de déterminer les équations d’état
qui régissent le système : ces dernières font intervenir les dérivées partielles de S et sont données
par

DUS =

(
∂S

∂U

)
V,N

=
1

T
DV S =

(
∂S

∂V

)
U,N

=
p

T
DNS =

(
∂S

∂N

)
V,U

=
−µ
T

où
— T est la température du système ;
— p est la pression du système ;
— µ est le potentiel chimique du système (qui renseigne sur l’équilibre osmotique d’un système 6) ;
et où les variables indicées sont considérées comme constantes.

Sachant que l’entropie du gaz de Van Der Waals (archétype des gaz réels), est donnée par

S = kBN ln

(
V −Nv0

N

)
+

3kBN

2
ln

(
U +KiN

2/V

N

)
+

3kBN

2
ln

(
4πm

3}2

)
+

5

2
kBN

où
— kB est la constante de Boltzmann et vaut approximativement 1, 38.10−23J/K,
— v0 est le volume occupé par une particule et dans lequel les autres particules ne peuvent

pénétrer,
— Ki > 0 est le paramètre d’interaction entre les particules,
— m est la masse d’une particule,
— } est la constante de Planck et vaut 6, 626.10−34J.s,
déterminer les équations d’état d’un tel gaz lorsque le nombre de particules N est constant et, à
partir de la première équation d’état, exprimer l’énergie interne U en fonction de V, N et T .

5. Par exemple, si on jette une goutte d’encre dans un verre d’eau, l’encre va “diffuser” dans le liquide et l’équilibre est
atteint lorsque l’encre est mélangée de façon homogène avec l’eau.

6. De manière générale, si deux substances de potentiels chimiques respectifs µ1, µ2 sont mises en présence l’une de
l’autre, l’équilibre thermodynamique est atteint lorsque µ1 = µ2.
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2. La pression P (en kPa), le volume V (en l) et la température T (en K) d’une mole d’un gaz parfait
sont liés par l’équation 7 :

PV = 8, 31T .

Sachant que, lors d’une mesure à l’instant t, la température d’un tel gaz, qui est de 300K, aug-
mente à la vitesse de 0, 1K/s et que son volume, qui est de 100 l, augmente à raison de 0, 2 l/s,
déterminer la vitesse de variation de la pression de ce gaz.

3. La recherche des extrema d’une fonction à une seule variable est relativement aisée : il suffit de
rechercher les valeurs en lesquelles la dérivée de cette fonction s’annule et de voir s’il s’agit d’un
minimum, d’un maximum ou d’un point d’inflexion. Cette recherche s’avère plus délicate pour une
fonction de plusieurs variables. Cependant, pour une fonction de 2 variables, nous disposons du
test suivant, appelé test des dérivées partielles :

Soient A une partie de R2, (a, b) ∈ A et f : (x, y) 7→ f(x, y) une fonction 2 fois
continûment dérivable sur A telle que

(Dxf)(a, b) = (Dyf)(a, b) = 0.

Posons

D = (D2
xf)(a, b)(D2

yf)(a, b)− [(DxDyf)(a, b)]
2
.

(a) Si D > 0 et si (D2
xf)(a, b) > 0 alors f(a, b) est un minimum local de f ;

(b) Si D > 0 et si (D2
xf)(a, b) < 0 alors f(a, b) est un maximum local de

f ;

(c) Si D < 0 alors f(a, b) n’est ni un minimum local, ni un maximum local
de f ; (a, b) est appelé “point-selle” ;

(d) Si D = 0 alors le test n’est pas concluant.

En se basant sur ce test,

a) rechercher les extrema ainsi que les points-selles de la fonction

f : (x, y) 7→ f(x, y) = x4 + y4 − 4xy + 1.

b) déterminer la distance 8 (c.-à-d. la plus courte distance) entre le point de coordonnées (1, 0,−2)
et le plan d’équation cartésienne x+ 2y + z = 4.

4. Si une charge électrique est répartie sur une région R et si la densité de charges (en unités par
unités carrées) est donnée par ρ(x, y) en un point(x, y) de R, alors la charge totale Q présente sur
cette région est donnée par

Q =

∫∫
R

ρ(x, y) dxdy.

Une charge électrique est distribuée sur le domaine triangulaire D de la figure ci-dessous de manière
telle que la densité de charge en (x, y) est donnée par ρ(x, y) = 2xy, mesurée en coulombs par
mètre carrés (C/m2). Calculer la charge totale présente sur D.

7. Cette équation est l’une des équations d’état d’un gaz parfait, obtenue par dérivation partielle de l’entropie d’un tel
gaz (cf. exercice précédent).

8. Suggestion : la distance entre deux points de coordonnées (x1, y1, z1) et (x2, y2, z2) est donnée par

d =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

et, comme d ≥ 0, minimiser d équivaut à minimiser d2.
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5. En physique, le moment d’inertie d’une masse ponctuelle m par rapport à un axe est défini par le
produit mr2, où r est la distance entre la masse ponctuelle m et l’axe. Cette notion se généralise
au cas d’une plaque de métal, qui occupe une région R du plan et dont la densité en (x, y) est
donnée par ρ(x, y), de la manière suivante.
Le moment d’inertie d’une telle plaque par rapport à l’axe des abscisses (resp. des ordonnées) vaut

IX =

∫∫
R

x2ρ(x, y) dxdy

(
resp. IY =

∫∫
R

y2ρ(x, y) dxdy

)
.

Il peut également être intéressant de considérer le moment d’inertie par rapport à l’origine O,
celui-ci étant donné par

IO =

∫∫
R

(x2 + y2)ρ(x, y) dxdy.

On remarque évidemment que IO = IX + IY .

Soit un disque homogène D de densité ρ(x, y) = ρ et de diamètre d. Déterminer
a) le moment d’inertie de ce disque par rapport à son centre ;
b) le moment d’inertie de ce disque par rapport à une droite quelconque d′ passant par son centre.

6. Dans certains contextes, le calcul de probabilités peut se ramener à du calcul intégral. En effet,
lorsque l’on modélise une quantité X à l’aide d’une fonction de densité x 7→ fX(x) positive,
intégrable sur R et d’intégrale égale à 1, la probabilité que cette quantité soit supérieure (resp.
inférieure) à une valeur a ∈ R (resp. b ∈ R) est donnée par

P[X > a] =

∫ +∞

a

fX(x) dx

(
resp. P[X < b] =

∫ b

−∞
fX(x) dx

)
.

De plus, si l’on s’intéresse à une autre quantité Y que l’on désire étudier conjointement avec X,
ces deux quantités peuvent être modélisées simultanément à l’aide d’une fonction de densité jointe
(x, y) 7→ f(X,Y )(x, y) positive et intégrable sur R2 et telle que∫ +∞

−∞

(∫ +∞

−∞
f(X,Y )(x, y) dx

)
dy = 1,

auquel cas la probabilité que (X,Y ) ∈ R (R partie de R2) est donnée par

P[(X,Y ) ∈ R] =

∫∫
R

f(X,Y )(x, y) dxdy.

Le patron d’une fabrique de batteries destinées aux appareils électroniques tels que les GSM, les
MP-3, etc... s’intéresse à la longévité de ses produits et décide d’étudier conjointement le nombre
maximal (qu’il note X), ainsi que le nombre minimal (qu’il note Y ), d’années de fonctionnement
de ces derniers. Après bien des calculs, il arrive à la conclusion que la fonction de densité jointe
de X et Y est de la forme
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f(X,Y )(x, y) =

{
C(x+ 2y) si 0 ≤ y ≤ x ≤ 10
0 sinon

.

(a) Déterminer la constante C pour que la fonction f(X,Y ) soit bien une fonction de densité jointe.
(b) Calculer la probabilité qu’une batterie fonctionne au plus 7 ans mais au moins 2 ans.

7. Deux variables aléatoires X et Y , modélisées respectivement par les fonctions de densité fX et fY ,
sont dites indépendantes lorsque leur fonction de densité jointe vaut le produit de leurs fonctions
de densité respectives, c.-à-d.

f(X,Y )(x, y) = fX(x)fY (y).

En outre, un temps d’attente T est modélisé par une fonction de densité de la forme

fT (t) =

{
0 si t < 0
µ−1e−t/µ si t ≥ 0

où µ > 0 est le temps d’attente moyen.

Le directeur d’un cinéma constate que le temps d’attente moyen pour obtenir un ticket est de
10 minutes, et celui pour obtenir une boisson frâıche de 5 minutes. En supposant que ces temps
d’attente sont indépendants, calculer la probabilité qu’un spectateur attende au total moins de 20
minutes avant de prendre place en ayant son ticket et une boisson.

Calcul matriciel

1. Le mouvement d’une particule se déplaçant dans le plan est régi par les équations différentielles
suivantes : {

Dx(t) = −4x(t)− 3y(t) + 5t
Dy(t) = −2x(t)− 5y(t) + 5et

.

Déterminer les composantes (x(t), y(t)) du vecteur position de cette particule à tout instant t.

2. Le mouvement d’une particule se déplaçant dans l’espace est régi par les équations différentielles
suivantes :  Dx(t) = x(t) + 2y(t)− z(t)

Dy(t) = 2x(t) + 4y(t)− 2z(t)
Dz(t) = −x(t)− 2y(t) + z(t)

.

Déterminer les composantes (x(t), y(t), z(t)) du vecteur position de cette particule à tout instant t.

3. Un individu vit dans un milieu où il est susceptible d’attrapper une maladie par piqûre d’insecte.
Il peut être dans l’un des trois états suivants : immunisé (I), malade (M), non malade et non
immunisé (S). D’un mois à l’autre, son état peut changer selon les règles suivantes :

- étant immunisé, il peut le rester avec une probabilité 0, 9 ou passer à l’état S avec une proba-
bilité 0, 1 ;

- étant dans l’état S, il peut le rester avec une probabilité 0, 5 ou passer à l’état M avec une
probabilité 0, 1 ;

- étant malade, il peut le rester avec une probabilité 0, 2 ou passer à l’état S avec une probabilité
0, 8.

Déterminer
a) la matrice de transition du système ;
b) la probabilité qu’un individu immunisé soit encore immunisé après deux mois ;
c) la probabilité qu’à long terme, un individu soit immunisé.

4. Un biologiste étudie le passage d’une molécule de phosphore dans un écosystème. Celle-ci peut se
trouver dans le sol, dans l’herbe, dans le bétail ou peut disparâıtre de l’écosystème. D’une heure
à l’autre, le transfert peut s’effectuer selon les modalités suivantes :
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- étant dans le sol, la molécule a 3 chances sur 5 d’y rester, 3 chances sur 10 de passer dans
l’herbe et 1 chance sur 10 de disparâıtre ;

- étant dans l’herbe, elle a 1 chance sur 10 de revenir dans le sol, 2 chances sur 5 de rester dans
l’herbe et 1 chance sur 2 de se retrouver dans le bétail ;

- étant dans le bétail, elle a 3 chances sur 4 de retourner dans le sol, 1 chance sur 5 de rester
dans le bétail et 1 chance sur 20 de disparâıtre ;

- si la molécule disparâıt, elle ne réapparâıt plus nulle part.
Déterminer la matrice de transition du système.

5. La cryptographie, pour beaucoup de monde, est un moyen de maintenir des communications
privées. En effet, la protection des communications sensibles a été l’objectif principal de la cryp-
tographie dans la grande partie de son histoire. Le chiffrage est la transformation des données
dans une forme illisible. Son but est d’assurer la sécurité en maintenant l’information cachée aux
gens à qui l’information n’est pas adressée, même ceux qui peuvent voir les données chiffrées. Le
déchiffrage est l’inverse du chiffrage ; c’est la transformation des données chiffrées dans une forme
intelligible.
Aujourd’hui, les gouvernements emploient des méthodes sophistiquées de codage et de décodage
des messages. Un type de code, qui est extrêmement difficile à déchiffrer, se sert d’une grande
matrice pour coder un message. Le récepteur du message le décode en employant l’inverse de la
matrice. Voici un exemple de codage/décodage d’un message par ce procédé.
Considérons le message

SUIS EN DANGER

ainsi que la matrice de codage (
1 −2
−1 3

)
= C.

Pour le codage, on assigne à chaque lettre de l’alphabet un nombre, à savoir simplement sa position
dans l’alphabet, c’est-à-dire A correspond à 1, B correspond à 2, . . . , Z correspond à 26. En outre,
on assigne le nombre 27 à un espace. Ainsi, le message devient :

S U I S * E N * D A N G E R
19 21 9 19 27 5 14 27 4 1 14 7 5 18.

Puisqu’on emploie une matrice 2×2, on décompose la forme numérique de ce message en une suite
de vecteurs 9 1× 2 :

(19 21), (9 19), (27 5), (14 27), (4 1), (14 7), (5 18).

On code alors le message en multipliant chacun de ces vecteurs par la matrice de codage C, ce qui
peut être fait en définissant une matrice dont les lignes sont ces vecteurs et en multipliant cette
dernière par C, ce qui nous donne :

19 21
9 19
27 5
14 27
4 1
14 7
5 18


(

1 −2
−1 3

)
=



−2 25
−10 39
22 −39
−13 53

3 −5
7 −7
−13 44


Dès lors, le message crypté est donné par les lignes de cette dernière matrice que l’on place bout
à bout pour la transmission :

−2, 25, −10, 39, 22, −39, −13, 53, 3, −5, 7, −7, −13, 44.

Enfin, pour décoder le message, le récepteur a recours à la même technique que celle employée
pour le codage mais en utilisant l’inverse de la matrice de codage, qui est donnée ici par

9. Dans le cas où il faut compléter le dernier vecteur, il suffit d’y placer des “27”, ce qui revient à compléter le message
par des espaces pour avoir un nombre de caractères qui soit multiple de la dimension de la matrice de codage.
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C−1 =

(
3 2
1 1

)
Il doit donc calculer le produit

−2 25
−10 39
22 −39
−13 53

3 −5
7 −7
−13 44


(

3 2
1 1

)
=



19 21
9 19
27 5
14 27
4 1
14 7
5 18


et il retrouve bien la matrice correspondant au message de départ, ce qui lui permet de lire le
message :

19 21 9 19 27 5 14 27 4 1 14 7 5 18
S U I S * E N * D A N G E R.

Le Gouvernement a réussi à intercepter le message crypté suivant, provenant de l’ennemi public
n◦1 et destiné à l’ennemi public n◦2 :

−18, −21, −31, 53, 48, 61, 3, −15, −21, −34, −30, −43, 45, 42, 48.

L’un de ses meilleurs espions infiltrés, James Bond, a découvert que la matrice utilisée par l’ennemi
pour coder ce message est la suivante : −3 −3 −4

0 1 1
4 3 4

 .

Malheureusement, il n’y connâıt rien en calcul matriciel et personne ne peut déchiffrer ce mes-
sage... Votre mission est de décoder ce message dans les plus brefs délais.

Approximations polynomiales

La vitesse v d’une vague est liée à sa longueur d’onde λ et à la profondeur h de l’eau (exprimées en
mètres) par l’expression

v2 =
gλ

2π
th

(
2πh

λ

)
,

où g est l’accélération due à la pesanteur.

— Sachant que th : x 7→ (ex − e−x)/(ex + e−x), déterminer l’approximation polynomiale à l’ordre 1
en 0 de cette fonction.

— Grâce à cette approximation, en sachant que la vague qui a ravagé le Japon en 2011 avait une
longueur d’onde de 5 km, à combien peut-on estimer la vitesse du tsunami lors de son arrivée près
des côtes (on suppose alors que la profondeur de l’eau est de 2 m) ?
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Liste 15 : Révisions en vue de l’examen

I. Description d’ensemble

Décrire analytiquement l’ensemble borné fermé hachuré suivant (les courbes représentées sont une droite et
une parabole) en commençant par l’ensemble de variation des ordonnées puis, à ordonnée fixée, l’ensemble
de variation des abscisses.
Faire de même en commençant par l’ensemble de variation des abscisses.

0 1 2 3 4 5 6−1−2−3

0

1

2

3

−1

−2

−3

−4

X

Y

II. Fonctions de plusieurs variables

1. On donne la fonction f : (x, y) 7→ ln

(√
x+ y

x− y

)
.

a) Déterminer son domaine de définition, de dérivabilité et les représenter dans un repère ortho-
normé.
b) Déterminer les dérivées partielles de cette fonction et, si possible, les évaluer au point de coor-
données (−2, 1).

2. Soit f une fonction continûment dérivable sur ] − 2, 1[×] − 4, 4[. On demande le domaine de
dérivabilité de la fonction F définie par F (x, y) = f(x+ y2, x2 + 4y2), sa représentation graphique
ainsi que l’expression des dérivées partielles de F en fonction de celles de f .

3. Si elles existent, calculer les intégrales suivantes

a) I =

∫ 4

0

(∫ 2

√
x

x sin(y5) dy

)
dx

b) I =

∫∫
A

e−y
2

dx dy si A est l’ensemble fermé borné hachuré ci-dessous

-
X1

6
Y

1

− 1
2

c) I =

∫∫
A

1√
(1 + x2 + y2)5

dx dy si A = [0,+∞[×[0,+∞[
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d) I =

∫ +∞

0

(∫ 2

0

e−(y+1)x

4 + y2
dy

)
dx

III. Calcul matriciel

1. Calculer (si elle existe) la matrice inverse de la matrice suivante puis montrer que la matrice
trouvée est bien l’inverse de la matrice donnée si

A =

 −2 2 3
1 −1 0
0 1 4

 .

2. Rechercher les valeurs propres et les vecteurs propres de la matrice suivante. Cette matrice est-elle
diagonalisable ? Pourquoi ? Si elle l’est, en déterminer une forme diagonale, ainsi qu’une matrice
inversible qui y conduit puis prouver que les matrices données sont correctes.

A =

 3 −2 −2
−2 3 −2
−2 −2 3

 .

3. Pour inciter les jeunes à faire du sport, une association oblige ses affiliés à pratiquer, chaque
semaine, un sport sur les trois qu’elle propose (jogging, natation, basket). D’une semaine à l’autre,
les étudiants peuvent changer de choix.
- Ayant choisi le jogging, un étudiant a une chance sur deux d’aller à la piscine et une chance sur
deux de pratiquer le basket la semaine suivante.
- S’il a nagé une semaine, la semaine suivante, il a une chance sur trois de poursuivre la même
activité, une chance sur trois de faire du jogging et une chance sur trois de pratiquer le basket.
- Enfin, s’il a joué au basket, il a une chance sur quatre de nager et trois chances sur quatre de
faire du jogging.
(i) Déterminer la matrice de transition.
(ii) Sachant que cette matrice est régulière, calculer la probabilité qu’à long terme un étudiant
fasse du jogging.

IV. Approximations polynomiales

Déterminer l’approximation polynomiale à l’ordre n = 0, 1, 2 et 3 en x0 = 0 pour la fonction

f : x 7→ sh(x) =
ex − e−x

2
.

Représenter f et ses approximations.

V. Développement en série de puissances

Déterminer le développement en série de puissances de x la fonction f : x 7→ 1/(1 + x2).



Chapitre 2

Calcul matriciel

2.1 Exercices de base sur le chapitre 1 (partim B)

Dans cette section figurent quelques exercices de base (dont il a été question durant les années
académiques mentionnées).

Liste 2002-2003

1. Soient les matrices

A =

(
1 0 −1
i 2 i+ 1

)
, B =

 1 −i
1
i 0
−1 1

 .

Calculer (si possible)

iA, A+B, A+ B̃, AA∗, AB, BA,BB.

2. Calculer le déterminant des matrices suivantes.(
1 −1
−2 5

)
,

(
i i
−i i

)
,

 1 0 −1
1 1 1
−1 1 1

 .

3. Factoriser le déterminant des matrices suivantes.(
1− x 2

2 1− x

)
,

 x x2 x3

y y2 y3

z z2 z3

 ,

 −a− x a 0
b −2b− x b
0 a −a− x


4. Calculer (si elle existe) la matrice inverse de chacune des matrices suivantes.

(
1 −1
−1 2

)
,

 1 0 1
0 1 −1
1 1 1

 .

5. Rechercher les valeurs propres et les vecteurs propres des matrices suivantes. Ces matrices sont-
elles diagonalisables ? Pourquoi ? Si elles le sont, en déterminer une forme diagonale, ainsi qu’une
matrice inversible qui y conduit.

(
1 1
2 2

)
,

(
1 1
0 1

)
,

(
1 i
−i 1

)
,

 1 1 0
0 1 0
0 0 1

 ,

 0 −1 1
3 2 −3
1 −1 0

 .

33
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6. QCM + justifier la réponse

— Si A est une matrice carrée telle que A2 = 0, alors A est la matrice nulle Vrai 2 Faux 2

— Le déterminant d’une matrice carrée dont les éléments sont des complexes est
un complexe 2 une matrice 2 un polynôme 2 aucune proposition correcte 2

— Si A et B sont des matrices carrées de même dimension qui vérifient AB = A, alors B est la
matrice identité Vrai 2 Faux 2

— Si A est une matrice qui vérifie A = A∗, si c ∈ C et si on pose B = cA, alors B = B∗

Vrai 2 Faux 2

— Si M est une matrice qui vérifie MM̃ = 1, alors M admet un inverse Vrai 2 Faux 2

— Si A,B sont deux matrices de même format, alors on a A+B = B +A Vrai 2 Faux 2

— Si A,B sont deux matrices carrées de même dimension, alors on a (A+B)2 = A2 + 2AB+B2

Vrai 2 Faux 2

— Les valeurs propres d’une matrice carrée réelle sont toujours des nombres réels
Vrai 2 Faux 2

— Une matrice carrée peut être inversible et avoir une valeur propre nulle Vrai 2 Faux 2

— La somme de deux vecteurs propres de même valeur propre est encore un vecteur propre de
même valeur propre Vrai 2 Faux 2

Liste 2003-2004

1. Soient les matrices

A =

 −2 2i
−1

i3
0

−1 1

 , B =

(
1 0 −1
i 2 i+ 1

)
, C =

(
−i+ 2 3

4i −i

)
.

Si possible, effectuer les opérations suivantes. Si cela ne l’est pas, en expliquer la raison.

iA, C∗, A+B, A+ B̃, AA∗, AB, BA, CB, CA.

2. Déterminer la forme générale des matrices qui commutent avec la matrice

(
1 1
0 1

)
.

3. Calculer le plus rapidement possible le déterminant de chacune des matrices suivantes.

(
i −1
−2 5i

)
,

 −1 0 −2
−1 1 1
−1 −1 1

 ,

 −1 4 −2
1 −1 1
1 −1 1

 .

4. Le déterminant de la matrice suivante est un polynôme en x. Factoriser ce polynôme.(
1− x 1

2 2− x

)
.

5. Factoriser le déterminant des matrices suivantes. x x2 x3

y y2 y3

z z2 z3

 ,

 −a− x a 0
b −2b− x b
0 a −a− x


6. Calculer (si elle existe) la matrice inverse de chacune des matrices suivantes.

(
1 1
i 2i

)
,

 1 1 1
0 1 −1
1 0 1

 .
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7. Rechercher les valeurs propres et les vecteurs propres des matrices suivantes. Ces matrices sont-
elles diagonalisables ? Pourquoi ? Si elle le sont, en déterminer une forme diagonale, ainsi qu’une
matrice inversible qui y conduit.(

1 1
2 2

)
,

(
1 0
1 1

)
,

(
1 i
−i 1

)
,

 1 0 0
0 1 0
0 1 1

 ,

 3 −2 4
−2 6 2
4 2 3

 .

8. Répondre aux questions suivantes et justifier la réponse.
— Si A est une matrice carrée telle que A2 = 0, alors A est la matrice nulle Vrai 2 Faux 2

— Si M est une matrice qui vérifie MM̃ = 1, alors M admet un inverse Vrai 2 Faux 2

— Si A,B sont deux matrices de même format, alors on a A+B = B +A Vrai 2 Faux 2

— Si A,B sont deux matrices carrées de même dimension, alors on a (A+B)2 = A2 + 2AB+B2

Vrai 2 Faux 2

— Les valeurs propres d’une matrice carrée réelle sont toujours des nombres réels
Vrai 2 Faux 2

— Une matrice carrée peut être inversible et avoir une valeur propre nulle Vrai 2 Faux 2

— La somme de deux vecteurs propres de même valeur propre est encore un vecteur propre de
même valeur propre Vrai 2 Faux 2

— La somme de deux valeurs propres d’une même matrice est encore une valeur propre de cette
matrice Vrai 2 Faux 2

— Si le complexe λ0 est une valeur propre de la matrice M alors λ0 est une valeur propre de la
matrice M Vrai 2 Faux 2

— Si un complexe est une valeur propre d’une matrice, alors il est aussi valeur propre de la matrice
transposée Vrai 2 Faux 2

Liste 2004/2005

1. Soient les matrices

A =

 −2i 2i4
(1 + i)2

i3
0 −1 1− i

 , B =

(
1 0 −1
i 2 i+ 1

)
, C =

(
−3i+ 1 3

4i −i

)
.

Si possible, effectuer les opérations suivantes. Si cela ne l’est pas, en expliquer la raison.

ĩA, (iB)∗, A+B, A+ B̃, AA∗, AB, BA, CB.

2. Déterminer la forme générale des matrices qui commutent avec la matrice

(
2 0
0 2

)
(resp. avec

la matrice

(
2 0
0 1

)
, avec la matrice

(
2 0
1 2

)
).

3. Calculer le plus rapidement possible le déterminant de chacune des matrices suivantes.(
i+ 1 1
−2i 5

)
,

1

3

 −2 1 2
2 −2 1
1 2 2

 .

4. Le déterminant des matrices suivantes est un polynôme en x. Factoriser ce polynôme en un produit
de facteurs du premier degré.(

2− x −4
1 x+ 1

)
,

(
2− x −4
−1 x+ 1

)
.

5. Factoriser le déterminant de la matrice suivante en un produit de polynômes du premier degré en
x, y, z.  1 x x3

1 y y3

1 z z3

 .
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6. Calculer (si elle existe) la matrice inverse de chacune des matrices suivantes (on donne α ∈ R).

(
−1 1
0 i

)
,

(
cos(α) sin(α)
sin(α) − cos(α)

)
,

 1 2 −2
−1 3 0
0 −2 1

 .

7. Si a est un réel donné, déterminer l’inverse de la matrice 1 a a2

0 1 a
0 0 1

 .

8. Démontrer que si A est une matrice carrée qui vérifie A2 − A + 1 = 0 alors A est inversible et
déterminer son inverse en fonction de A.

9. Rechercher les valeurs propres et les vecteurs propres des matrices suivantes. Ces matrices sont-
elles diagonalisables ? Pourquoi ? Si elles le sont, en déterminer une forme diagonale, ainsi qu’une
matrice inversible qui y conduit.

(
2 2
2 2

)
,

(
2 0
2 2

)
,

(
2 0
0 2

)
,

(
1 i+ 1

1 + i 1

)
,

 1 1 0
0 1 0
0 0 1

 ,

 1 −1 −1
−1 1 −1
−1 −1 1

 .

10. Répondre aux questions suivantes et justifier la réponse.
— Si A est une matrice carrée telle que A2 = A, alors A est la matrice nulle ou est la matrice

identité Vrai 2 Faux 2

— Si M est une matrice carrée qui vérifie MM̃ = 1, alors M vérifie aussi M̃M = 1
Vrai 2 Faux 2

— Si A,B sont deux matrices de même format, alors on a A(A+B) = A2 +ABVrai 2 Faux 2

— Si A,B sont deux matrices carrées de même dimension, alors on a A2−B2 = (A−B) (A+B)
Vrai 2 Faux 2

— Une matrice carrée peut être inversible et avoir une valeur propre nulle Vrai 2 Faux 2

— La somme de deux vecteurs propres de même valeur propre est encore un vecteur propre de
même valeur propre Vrai 2 Faux 2

— La somme de deux vecteurs propres de valeur propre nulle est encore un vecteur propre de
valeur propre nulle Vrai 2 Faux 2

— La trace du produit de deux matrices carrées de même dimension reste la même si on permute
l’ordre des facteurs du produit. Vrai 2 Faux 2

2.2 Résolution des exercices de la “liste type 2002/2003”

Exercice 1
• On a

iA =

(
i 0 −i
−1 2i −1 + i

)
.

• La matrice A est une matrice de format 2×3 tandis que B est une matrice de format 3×2. Ces matrices
n’ayant pas le même format, il est impossible de les additionner.

• Puisque B est une matrice de format 3× 2, B̃ est de format 2× 3 et peut être additionné à A, matrice
de même format. On a

A+ B̃ =

(
1 0 −1
i 2 1 + i

)
+

(
1 1

i −1
−i 0 1

)
=

(
2 1

i −2
0 2 2 + i

)
.

• Puisque A est une matrice de format 2 × 3, A∗ est une matrice de format 3 × 2 ; le produit AA∗ est
donc possible et donne une matrice de format 2× 2. On a



2.2. LISTE 2002/2003 37

Ã =

 1 i
0 2
−1 1 + i

 donc A∗ =

 1 −i
0 2
−1 1− i

 ;

ainsi,

AA∗ =

(
1 0 −1
i 2 1 + i

) 1 −i
0 2
−1 1− i

 =

(
2 −1
−1 7

)
.

• Le produit AB est possible puisque A est de format 2 × 3 et B de format 3 × 2 ; le produit est une
matrice de format 2× 2. On a

AB =

(
1 0 −1
i 2 1 + i

) 1 −i
−i 0
−1 1

 =

(
2 −1− i

−1− 2i 2 + i

)
.

• Le produit BA est possible puisque B est de format 3 × 2 et A de format 2 × 3 ; le produit est une
matrice de format 3× 3. On a

BA =

 1 −i
−i 0
−1 1

( 1 0 −1
i 2 1 + i

)
=

 2 −2i −i
−i 0 i
−1 + i 2 2 + i

 .

• Le nombre de colonnes de B est différent du nombre de lignes de B ; le produit BB est donc impossible.

Exercice 2

• On a det

(
1 −1
−2 5

)
= 1.5− (−1).(−2) = 3.

• On a det

(
i i
−i i

)
= i2 + i2 = −2.

• On a

det

 1 0 −1
1 1 1
−1 1 1

 =
0 1 0
1 1 1
−1 1 1

si on remplace L1 par L1 + L3

= (−1)
1 1
−1 1

= −2 en développant le déterminant selon la première ligne.

Exercice 3

• On a det

(
1− x 2

2 1− x

)
= (1− x)2 − 4 = (1− x− 2)(1− x+ 2) = (−x− 1)(3− x).
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• On a

det

 x x2 x3

y y2 y3

z z2 z3


= xyz

1 x x2

1 y y2

1 z z2
mise en évidence du facteur x sur L1, y sur L2 et z sur L3

= xyz
0 x− z x2 − z2

0 y − z y2 − z2

1 z z2
si on remplace L1 par L1 − L3 et L2 par L2 − L3

= xyz(x− z)(y − z)
0 1 x+ z
0 1 y + z
1 z z2

mise en évidence du facteur

{
x− z sur L1

y − z sur L2

= xyz(x− z)(y − z) 1 x+ z
1 y + z

en développant le déterminant selon la première colonne

= xyz(x− z)(y − z)(y + z − x− z)
= xyz(x− z)(y − z)(y − x).

• On a

det

 −a− x a 0
b −2b− x b
0 a −a− x


=

−x a 0
−x −2b− x b
−x a −a− x

si on remplace C1 par C1 + C2 + C3

=
0 0 a+ x
−x −2b− x b
−x a −a− x

si on remplace L1 par L1 − L3

= (a+ x)
−x −2b− x
−x a

en développant le déterminant selon la première ligne

= −x(a+ x)
1 −2b− x
1 a

mise en évidence du facteur (−x) sur C1

= −x(a+ x)(a+ 2b+ x).

Exercice 4

• Posons A =

(
1 −1
−1 2

)
. Puisque detA = 2− 1 = 1 6= 0, la matrice A est inversible. Déterminons les

cofacteurs (A)i,j des éléments (A)i,j , (i, j = 1, 2) de A. On a (A)1,1 = 2, (A)1,2 = 1, (A)2,1 = 1, (A)2,2 =
1. On obtient ainsi

A−1 =
1

detA
Ã =

(
2 1
1 1

)
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• Posons A =

 1 0 1
0 1 −1
1 1 1

. On a

detA =
1 0 1
0 1 −1
0 1 0

si on remplace L3 par L3 − L1

=
1 −1
1 0

en développant le déterminant selon la première colonne

= 1.

Puisque detA 6= 0, la matrice inverse existe. Déterminons les cofacteurs (A)i,j des éléments (A)i,j , (i, j =
1, 2, 3) de A. On a

(A)1,1 =
1 −1
1 1

= 2; (A)1,2 = (−1)
0 −1
1 1

= −1; (A)1,3 =
0 1
1 1

= −1;

(A)2,1 = (−1)
0 1
1 1

= 1; (A)2,2 =
1 1
1 1

= 0; (A)2,3 = (−1)
1 0
1 1

= −1;

(A)3,1 =
0 1
1 −1

= −1; (A)3,2 = (−1)
1 1
0 −1

= 1; (A)3,3 =
1 0
0 1

= 1.

Ainsi, on obtient

A−1 =
1

detA
Ã =

 2 1 −1
−1 0 1
−1 −1 1



Exercice 5

5.1) Considérons la matrice A =

(
1 1
2 2

)
.

— Le polynôme caractéristique de A est

det(A− λ 1) =
1− λ 1

2 2− λ = (1− λ) (2− λ)− 2 = 2− 3λ+ λ2 − 2 = λ2 − 3λ = λ(λ− 3).

Les valeurs propres de A sont donc 0 et 3 ; ces valeurs propres étant simples, la matrice A est
diagonalisable.

— Cherchons les vecteurs propres associés à la valeur propre 0 c’est-à-dire les vecteurs non nuls

X =

(
x
y

)
tels que (A− 0 1)X = 0. On a

(A− 0 1)X =

(
1 1
2 2

)(
x
y

)
= 0⇔

{
x+ y = 0
2x+ 2y = 0

⇔ x+ y = 0⇔ X = x

(
1
−1

)
.

Les vecteurs propres associés à la valeur propre 0 sont donc les vecteurs

X = c

(
1
−1

)
, c ∈ C0.

— Cherchons les vecteurs propres associés à la valeur propre 3 c’est-à-dire les vecteurs non nuls

X =

(
x
y

)
tels que (A− 3 1)X = 0. On a

(A− 3 1)X =

(
−2 1
2 −1

)(
x
y

)
= 0⇔

{
−2x+ y = 0
2x− y = 0

⇔ 2x− y = 0⇔ X = x

(
1
2

)
.

Les vecteurs propres associés à la valeur propre 3 sont donc les vecteurs

X = c

(
1
2

)
, c ∈ C0.
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— La matrice S =

(
1 1
−1 2

)
est telle que S−1AS =

(
0 0
0 3

)
.

5.2) Soit la matrice A =

(
1 1
0 1

)
.

— Le polynôme caractéristique de A est

det(A− λ 1) =
1− λ 1

0 1− λ = (1− λ)2.

La matrice A possède donc la valeur propre double 1.
— Cherchons les vecteurs propres associés cette valeur propre 1 c’est-à-dire les vecteurs non nuls

X =

(
x
y

)
tels que (A− 1)X = 0. On a

(A− 1)X =

(
0 1
0 0

)(
x
y

)
= 0⇔ y = 0⇔ X = x

(
1
0

)
.

Les vecteurs propres associés à cette valeur propre sont donc les vecteurs

X = c

(
1
0

)
, c ∈ C0.

Comme ils sont tous multiples du vecteur

(
1
0

)
, deux vecteurs propres sont toujours linéairement

dépendants et donc la matrice A n’est pas diagonalisable.

5.3) Considérons la matrice A =

(
1 i
−i 1

)
.

— Le polynôme caractéristique de A est

det(A−λ 1) =
1− λ i
−i 1− λ = (1−λ)2 + i2 = (1−λ)2−1 = (1−λ−1)(1−λ+ 1) = −λ(2−λ).

Les valeurs propres de A sont donc 0 et 2 ; puisque ces valeurs propres sont simples, la matrice A
est diagonalisable.

— Cherchons les vecteurs propres associés à la valeur propre 0 c’est-à-dire les vecteurs non nuls

X =

(
x
y

)
tels que (A− 0 1)X = 0. On a

(A− 0 1)X =

(
1 i
−i 1

)(
x
y

)
= 0⇔

{
x+ iy = 0
−ix+ y = 0

⇔ x+ iy = 0⇔ X = y

(
−i
1

)
.

Les vecteurs propres associés à la valeur propre 0 sont donc les vecteurs

X = c

(
−i
1

)
, c ∈ C0.

— Cherchons les vecteurs propres associés à la valeur propre 2 c’est-à-dire les vecteurs non nuls

X =

(
x
y

)
tels que (A− 2 1)X = 0. On a

(A− 2 1)X =

(
−1 i
−i −1

)(
x
y

)
= 0⇔

{
−x+ iy = 0
−ix− y = 0

⇔ −x+ iy = 0⇔ X = y

(
i
1

)
.

Les vecteurs propres associés à la valeur propre 2 sont donc les vecteurs

X = c

(
i
1

)
, c ∈ C0.
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— La matrice S

(
−i i
1 1

)
est telle que S−1AS =

(
0 0
0 2

)
.

5.4) Soit la matrice A =

 1 1 0
0 1 0
0 0 1

 .

— Le polynôme caractéristique de A est

det(A− λ 1) =
1− λ 1 0

0 1− λ 0
0 0 1− λ

= (1− λ)3.

La matrice A admet donc la valeur propre triple 1.
— Cherchons les vecteurs propres associés à cette valeur propre 1 c’est-à-dire les vecteurs non nuls

X =

 x
y
z

 tels que (A− 1)X = 0. On a

(A− 1)X =

 0 1 0
0 0 0
0 0 0

 x
y
z

 = 0⇔ y = 0⇔ X = x

 1
0
0

+ z

 0
0
1

 .

Les vecteurs propres associés à cette valeur propre 1 sont donc les vecteurs

X = c1

 1
0
0

+ c2

 0
0
1

 , c1, c2 ∈ C non simultanément nuls.

Trois vecteurs propres sont donc toujours linéairement dépendants ; la matrice A n’est donc pas
diagonalisable.

5.5) Considérons la matrice A =

 0 −1 1
3 2 −3
1 −1 0

 .

— Le polynôme caractéristique de A est

det(A− λ 1) =
−λ −1 1
3 2− λ −3
1 −1 −λ

=
−λ −1 1
3 2− λ −3

1 + λ 0 −1− λ
si on remplace L3 par L3 − L1

=
−λ −1 1− λ
3 2− λ 0

1 + λ 0 0
si on remplace C3 par C3 + C1

= (1− λ)
3 2− λ

1 + λ 0
en développant selon la
troisième colonne

= (1− λ)(λ− 2)(λ+ 1)

Les valeurs propres de A sont donc −1, 1 et 2 ; puisque ces valeurs propres sont simples, la matrice
est diagonalisable.

— Cherchons les vecteurs propres associés à la valeur propre −1 c’est-à-dire les vecteurs non nuls
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X =

 x
y
z

 tels que (A+ 1)X = 0. On a successivement

(A+ 1)X =

 1 −1 1
3 3 −3
1 −1 1

 x
y
z

 = 0 ⇔
{
x− y + z = 0 (1)
x+ y − z = 0 (2)

⇔
{

2x = 0 (1) + (2)
2y − 2z = 0 (2)− (1)

⇔
{
x = 0
y = z

⇔ X = y

 0
1
1

 .

Les vecteurs propres associés à la valeur propre −1 sont donc les vecteurs

X = c

 0
1
1

 , c ∈ C0.

— Cherchons les vecteurs propres associés à la valeur propre 1 c’est-à-dire les vecteurs non nuls

X =

 x
y
z

 tels que (A− 1)X = 0. On a successivement

(A− 1)X =

 −1 −1 1
3 1 −3
1 −1 −1

 x
y
z

 = 0 ⇔

 −x− y + z = 0 (1)
3x+ y − 3z = 0 (2)
x− y − z = 0 (3)

⇔

 4x− 4z = 0 (2) + (3)
y = 0 (1) + (3)
x− y − z = 0 (3)

⇔
{
x = z
y = 0

⇔ X = x

 1
0
1

 .

Les vecteurs propres associés à la valeur propre 1 sont donc les vecteurs

X = c

 1
0
1

 , c ∈ C0.

— Cherchons les vecteurs propres associés à la valeur propre 2 c’est-à-dire les vecteurs non nuls

X =

 x
y
z

 tels que (A− 2 1)X = 0. On a successivement

(A− 2 1)X =

 −2 −1 1
3 0 −3
1 −1 −2

 x
y
z

 = 0 ⇔

 −2x− y + z = 0
3x− 3z = 0
x− y − 2z = 0

⇔
{
−2x− y + z = 0
x− z = 0

⇔
{
x = z
y = −z

⇔ X = z

 1
−1
1

 .
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Les vecteurs propres associés à la valeur propre 2 sont donc les vecteurs

X = c

 1
−1
1

 , c ∈ C0.

— La matrice S =

 0 1 1
1 0 −1
1 1 1

 est telle que S−1AS =

 −1 0 0
0 1 0
0 0 2

 .

REMARQUES IMPORTANTES
Lors de l’inversion et de la diagonalisation de matrices, on vérifie aisément que la solution trouvée est

correcte.
— Quand on a déterminé la matrice inverse d’une matrice donnée, on vérifie que le résultat est correct

en effectuant le produit de la matrice de départ par la matrice trouvée. On doit obtenir la matrice
identité.

— Quand on a déterminé une forme diagonale ∆ de la matrice de départ A et une matrice S qui y
conduit, pour savoir si le résultat est correct, on doit vérifier que S−1AS = ∆, ce qui est équivalent
à la vérification de l’égalité (bien plus simple !) AS = S∆.

2.3 Solutions des exercices de la “liste type 2003/2004”

Exercice 1

iA =

 −2i −2
1 0
−i i

 ; C∗ =

(
2 + i −4i

3 i

)
;A+B impossible car matrices de formats différents ;

A+ B̃ =

 −1 3i
−i 2
−2 2 + i

 ; AA∗ =

 8 −2i 2 + 2i
2i 1 i

2− 2i −i 2

 ; AB =

 −4 4i 2i
−i 0 i
−1 + i 2 2 + i

 ;

BA =

(
−1 −1 + 2i

−1− 5i −1 + i

)
; CB =

(
2 + 2i 6 1 + 4i
1 + 4i −2i 1− 5i

)
;

CA impossible car le nombre de colonnes de C n’est pas égal au nombre de lignes de A.

Exercice 2(
a b
0 a

)
avec a, b ∈ C.

Exercice 3

−7,−6, 0.

Exercice 4

x(x− 3).

Exercice 5

xyz(y − x)(z − x)(z − y) et −x(x+ a)(x+ a+ 2b).

Exercice 6(
2 i
−1 −i

)
et

 −1 1 2
1 0 −1
1 −1 −1

.

Exercice 7

Première matrice : valeurs propres simples 0 et 3 donc matrice diagonalisable.
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Vecteurs propres relatifs à la valeur propre 0 : c

(
−1
1

)
, c ∈ C0.

Vecteurs propres relatifs à la valeur propre 3 : c

(
1
2

)
, c ∈ C0.

La matrice S =

(
−1 1
1 2

)
est telle que S−1AS =

(
0 0
0 3

)
.

Deuxième matrice : valeur propre double 1.

Vecteurs propres relatifs à la valeur propre 1 : c

(
0
1

)
, c ∈ C0 donc matrice non diagonalisable.

Troisième matrice : valeurs propres simples 0 et 2 donc matrice diagonalisable.

Vecteurs propres relatifs à la valeur propre 0 : c

(
−i
1

)
, c ∈ C0.

Vecteurs propres relatifs à la valeur propre 2 : c

(
i
1

)
, c ∈ C0.

La matrice S =

(
−i i
1 1

)
est telle que S−1AS =

(
0 0
0 2

)
.

Quatrième matrice : valeur propre triple 1.

Vecteurs propres relatifs à la valeur propre 1 : c1

 1
0
0

+c2

 0
0
1

 , c1, c2 ∈ C non simultanément nuls ;

la matrice n’est donc pas diagonalisable.

Cinquième matrice : valeurs propres −2 (simple) et 7 (double).

Vecteurs propres relatifs à la valeur propre 7 : c1

 1
−2
0

 + c2

 0
2
1

 , c1, c2 ∈ C non simultanément

nuls.

Vecteurs propres relatifs à la valeur propre −2 : c

 2
1
−2

 , c ∈ C0.

La matrice S =

 1 0 2
−2 2 1
0 1 −2

 est telle que S−1AS =

 7 0 0
0 7 0
0 0 −2

 .

Exercice 8

Faux, vrai, vrai, faux, faux, faux, faux, faux, vrai, vrai.

2.4 Solutions des exercices de la “liste type 2004/2005”

Exercice 1

ĩA =

 2 0
2i −i
−2i 1 + i

 (iB)∗ =

 −i −1
0 −2i
i −1− i

 A+B =

(
1− 2i 2 −3
i 1 2

)

A+ B̃ : impossible car A et B̃ ne sont pas de même format.

AA∗ =

(
12 −4− 2i

−4 + 2i 3

)
AB : impossible car le nombre de colonnes de A (3) diffère du nombre de lignes de B (2).
BA : impossible car le nombre de colonnes de B (3) diffère du nombre de lignes de A (2).

CB =

(
1 6 2 + 6i

1 + 4i −2i 1− 5i

)
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Exercice 2

Toute matrice commute avec

(
2 0
0 2

)
.

Toute matrice diagonale commute avec

(
2 0
0 1

)
.

Toute matrice du type

(
a 0
c a

)
commute avec

(
2 0
1 2

)
.

Exercice 3

Le premier déterminant est égal à 5 + 7i et le second à 7
9 .

Exercice 4

Le premier déterminant se factorise sous la forme (3− x)(x+ 2) et le second sous la forme

−(x− 1 + i
√

7

2
)(x− 1− i

√
7

2
).

Exercice 5

Le déterminant se factorise sous la forme (x− y)(x− z)(z − y)(x+ y + z).

Exercice 6

Les matrices inverses sont

(
−1 −i
0 −i

) (
cos(α) sin(α)
sin(α) − cos(α)

)  3 2 6
1 1 2
2 2 5

 .

Exercice 7

L’inverse de la matrice donnée est

 1 −a 0
0 1 −a
0 0 1

.

Exercice 8
—

Exercice 9

— Matrice

(
2 2
2 2

)
: valeurs propres : 0 et 4.

Vecteurs propres relatifs à λ = 0 : c

(
−1
1

)
, c ∈ C0.

Vecteurs propres relatifs à λ = 4 : c

(
1
1

)
, c ∈ C0.

Cette matrice A est diagonalisable ; si S =

(
−1 1
1 1

)
, on a S−1AS =

(
0 0
0 4

)
.

— Matrice

(
2 0
2 2

)
: valeur propre : 2 (double).

Vecteurs propres relatifs à λ = 2 : c

(
0
1

)
, c ∈ C0.

Cette matrice n’est pas diagonalisable car elle ne possède pas deux vecteurs linéairement indépendants.

— Matrice

(
2 0
0 2

)
: valeur propre : 2 (double).

Vecteurs propres relatifs à λ = 2 : c

(
1
0

)
+ c′

(
0
1

)
avec c, c′ ∈ C non simultanément nuls.

Cette matrice A est déjà diagonale.
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— Matrice

(
1 1 + i

1 + i 1

)
: valeurs propres : −i et 2 + i.

Vecteurs propres relatifs à λ = −i : c

(
1
−1

)
, c ∈ C0.

Vecteurs propres relatifs à λ = 2 + i : c

(
1
1

)
, c ∈ C0.

Cette matrice A est diagonalisable ; si S =

(
1 1
−1 1

)
, on a S−1AS =

(
−i 0
0 2 + i

)
.

— Matrice

 1 1 0
0 1 0
0 0 1

 : valeur propre : 1 (triple).

Vecteurs propres relatifs à λ = 1 : c

 1
0
0

+ c′

 0
0
1

 avec c, c′ ∈ C non simultanément nuls.

Cette matrice n’est pas diagonalisable car elle ne possède pas trois vecteurs propres linéairement
indépendants.

— Matrice

 1 −1 −1
−1 1 −1
−1 −1 1

 : valeurs propres : −1 (simple) et 2 (double).

Vecteurs propres relatifs à λ = 2 : c

 1
−1
0

+ c′

 1
0
−1

 avec c, c′ ∈ C non simultanément nuls.

Vecteurs propres relatifs à λ = −1 : c

 1
1
1

 , c ∈ C0.

Cette matrice A est diagonalisable ; si S =

 1 1 1
−1 0 1
0 −1 1

, on a S−1AS =

 2 0 0
0 2 0
0 0 −1

.

Exercice 10

Faux, vrai, faux, faux, faux, faux, faux, vrai.



Chapitre 3

Fonctions de plusieurs variables

3.1 Exercices de base sur le chapitre 2 (partim B)

Dans cette section figurent quelques exercices de base (dont il a été question durant les années
académiques mentionnées).

Liste 2002-2003

1. Quel est le domaine de définition et de dérivabilité des fonctions données ci-dessous ? Représenter
graphiquement ces domaines.

f1(x, y) =
1√

1− (x2 + y2)
, f2(x, y) = ln(x− y), f3(x, y) = ln(|x| − |y|)

f4(x, y) = e
√
x2+y2 , f5(x, y) = arcos(x2 + y2), f6(x, y) = arctan

(
x

y

)
.

Calculer
D2
xf6(x, y) +D2

yf6(x, y), DxDyf6(x, y).

2. Permuter les intégrales et représenter l’ensemble d’intégration.∫ 1

0

(∫ 1−y

y−1

f(x, y) dx

)
dy,

∫ 1

0

(∫ −2x+2

0

f(x, y) dy

)
dx,

∫ +∞

1

(∫ +∞

x+1

f(x, y) dy

)
dx.

3. Calculer

∫ 3
√
π

0

(∫ 3√
π2

y2
sin(
√
x3) dx

)
dy et représenter l’ensemble d’intégration.

4. On considère la partie A du plan bornée par les droites d’équation y = 2x, x = 0, y = 4. Représenter

A et calculer

∫∫
A

x dx dy.

5. On considère la partie A du plan délimitée par l’axe X et le graphique de la fonction cos(x), x ∈
[π/2, 3π/2]. Représenter A et calculer l’intégrale de f(x, y) = 2y sur A.

6. Calculer

∫∫
A

(x+ y) dxdy où A est l’ensemble hachuré ci-dessous.

Y

X1

1

2

2

47
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7. Calculer

∫∫
A

√
x2 + y2 dxdy où A est l’ensemble hachuré ci-dessous.

Y

X1

1

2

2

8. Calculer

∫∫
A

x√
1 + y2

dxdy où A est la partie hachurée ci-dessous

-1 -0.5 0.5 1 1.5 2

1

2

3

4

-
X

6
Y

→ y = x2

9. Si elle existe, calculer l’intégrale

∫ +∞

0

(∫ x2

0

xe−x
2

x2 + y
dy

)
dx et représenter son ensemble d’intégration.

10. Calculer l’intégrale de f(x, y) = e−(x2+y2) sur A = [0,+∞[×[0,+∞[.

Liste 2003-2004

1. Déterminer le domaine de définition des fonctions données explicitement ci-dessous et le représenter.

f(x, y) =
1√

4− x2 − y2
, g(x, y) = ln(|x|+ |y| − 1).

2. Déterminer le domaine de définition et de dérivabilité des fonctions données explicitement ci-
dessous, les représenter et calculer les dérivées partielles.

f(x, y) =
x

x2 + y2
, f(x, y) = ln

(
x2 +

y2

4
− 1

)
.

3. Déterminer où la fonction (x, y) 7→ ln(x2 + y2) est indéfiniment continûment dérivable et calculer

D2
xf(x, y) +D2

yf(x, y).

4. On donne les fonctions (r, θ) 7→ f(r, θ) = r cos(θ) et (r, θ) 7→ g(r, θ) = r sin(θ). Où ces fonctions
sont-elles dérivables ? Dans cet ensemble, calculer

Drf(r, θ)Dθg(r, θ)−Dθf(r, θ)Drg(r, θ).
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5. Permuter les intégrales et représenter l’ensemble d’intégration dans les deux cas suivants

a)

∫ 1

−1

(∫ (x+1)/2

0

f(x, y)dy

)
dx b)

∫ 0

−1

(∫ 1−y

√
1−y2

f(x, y)dx

)
dy.

6. a) On donne l’ensemble A suivant (ensemble borné fermé), borné par les deux droites obliques et

les deux droites parallèles à Y . Calculer (et justifier l’intégrabilité)

∫∫
A

sin(x+y) dxdy et simplifier

la réponse au maximum.

-

X

6Y

1

1

−1

�
�
�
�
�
�
�
�
�
�
��

•(1, 1)
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•(1,−1)

@@R
π/8

@@R
π/2

b) On donne l’ensemble A suivant (ensemble hachuré, borné et fermé). Calculer (et justifier

l’intégrabilité)

∫∫
A

x
√
y2 − x2 dxdy.

7. a) On donne l’ensemble A = {(x, y) ∈ R2 : x ∈ [1, e], y ∈ [0, ln(x)]} et la fonction (x, y) 7→ f(x, y) =
y. Représenter A. Calculer (et justifier l’intégrabilité) l’intégrale de f sur A en choisissant un ordre
d’intégration. Effectuer à nouveau le calcul après avoir permuté l’ordre d’intégration.

b) On donne A = {(x, y) ∈ R2 : y ∈ [0, 1], x ∈ [y, 1]} et la fonction (x, y) 7→ f(x, y) = ex
2

.
Représenter A. Etablir que f est intégrable sur A et calculer son intégrale.

c) On donne A = {(x, y) ∈ R2 : x ∈ [1, 2], y ≥ 0} = [1, 2]× [0,+∞[ et la fonction (x, y) 7→ f(x, y) =
ye−xy. Représenter A. Etablir que f est intégrable sur A et calculer son intégrale.

d) On donne l’ensemble A = {(x, y) : x, y ∈ R, 0 < y ≤ 1, 1/ 3
√
y ≤ x ≤ 1/

√
y} et la fonction

(x, y) 7→ f(x, y) = eyx
2

. Représenter A. Etablir que f est intégrable sur A et calculer son intégrale.

8. a) Représenter l’ensemble d’intégration et calculer (en justifiant)∫ 1

0

(∫ 0

−
√

1−x2

e−
√
x2+y2 dy

)
dx.
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b) Représenter l’ensemble d’intégration, calculer (en justifiant) et donner une interprétation géométrique
de l’intégrale suivante ∫ 1

0

(∫ √1−x2

√
x−x2

1 dy

)
dx.

Suggestion d’exercices supplémentaires

1. Calculer et représenter l’ensemble d’intégration :∫ 1

0

(∫ √1−x2

0

y2 dy

)
dx.

2. L’intégrale suivante a-t-elle un sens ? Si oui, la calculer.∫ +∞

0

e−x − e−2x

x
dx.

(Suggestion : transformer 1/x en une intégrale ; permuter alors les intégrales.)

3. L’intégrale suivante a-t-elle un sens ? Si oui, la calculer.∫ +∞

0

ln(x)

1− x2
dx.

(Suggestion : transformer ln(x) en une intégrale : 2 ln(x) =
∫ +∞
0

(x2/(1+x2y)−1/(1+y))dy ; permuter alors les intégrales.)

En déduire la valeur de
∫ 1

0
ln(x)/(1−x)dx et de

∫ 1

0
ln(x)/(1 +x)dx, puis la valeur de

∑+∞
m=1 1/m2

et de
∑+∞
m=1(−1)m/m2.

(Suggestions : Garnir, Fonctions de variables réelles II, pp 257-259.)

Liste 2004/2005

1. Déterminer le domaine de définition des fonctions données explicitement ci-dessous et le représenter.

f(x, y) =
√
x2 − y2 + 9, g(x, y) = ln(|x+ y| − 1), h(x, h) = arcsin

(
1

x+ y

)
.

2. Déterminer le domaine de définition et d’infinie dérivabilté des fonctions f, g données explicitement
ci-dessous, les représenter et calculer les dérivées partielles premières et secondes de f , les dérivées
partielles premières de h et |x|Dxg(x, y) + |y|Dyg(x, y).

f(x, y) = ln(
√
x2 + y2), g(x, y) = arcsin

(
x

y

)
, h(x, y) = ln(

√
x2 + y + 1).

3. On donne une fonction f , continûment dérivable sur ] − 1, 1[×]0,+∞[. On demande le domaine
de dérivabilité de la fonction F : t 7→ f(ln(t), e − et) et l’expression de sa dérivée première en
fonction des dérivées partielles de f .

4. Permuter les intégrales et représenter l’ensemble d’intégration dans les cas suivants

a)

∫ 2

−2

(∫ −x/2
−1

f(x, y)dy

)
dx, b)

∫ 0

−1

(∫ 0

−3x−4

f(x, y)dy

)
dx c)

∫ √2

0

(∫ √4−y2

y

f(x, y)dx

)
dy.
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5. On considère l’ensemble borné fermé du plan (parallélogramme) délimité par les droites dont les
équations équations cartésiennes sont les suivantes

d1 : x− y = 0, d1 : 2y + x = 0, d3 : 2y + x− 2 = 0, d4 : y − x = 2.

Représenter cet ensemble et déterminer l’intégrale de f(x, y) = y sur celui-ci.

6. On considère l’ensemble A =
{

(x, y) ∈ R2 : 0 ≤ y ≤ inf{e−x, ln(x+ e)}
}
. Déterminer, si elle

existe, l’intégrale de f(x, y) = x+ y sur A.

7. a) Calculer l’intégrale de f(x, y) = y2 sin(xy) sur A = [0, π/2]× [0, 1].

b) Calculer l’intégrale de f(x, y) = x+ y sur A = {(x, y) : 0 ≤ y ≤ inf{x,
√

1− x2}}.
8. a) Calculer l’intégrale de f(x, y) = xey sur l’ensemble borné fermé hachuré suivant (et donner une

description analytique de cet ensemble)

-1.5-1-0.5 0.5 1 1.5 X

-2

-1

1

2

Y
y=x  -1

2

2y=1-x  

-

6

b) Calculer l’intégrale de f(x, y) = x2 sin(xy) sur l’ensemble borné et fermé suivant (hachuré)

-

X

6Y

1
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•(1, 1)

@@R
π
√

3
3

9. Déterminer si les intégrales suivantes existent ; si oui, les calculer. Représenter géométriquement
l’ensemble d’intégration dans chaque cas.

a)

∫ +∞

0

(∫ x2

0

xe−x
2

x2 + y
dy

)
dx, b)

∫ +∞

0

(∫ x2

0

e−x
2

x2 + y
dy

)
dx,

c)

∫ 1

0

(∫ +∞

y

√
y

x2 + y2
dx

)
dy, d)

∫ 1

−1

(∫ x2

0

1

x+ y
dy

)
dx

10. Calculer l’intégrale de f(x, y) =
√
x2 + y2 sur A = {(x, y) : x ≥ 0, y ≤ 0, x2 + y2 ≤ 4}.

11. Soit A la surface fermée du plan bornée par les cercles de rayon respectivement 1, 2, centrés à
l’origine et l’axe X. Calculer l’intégrale de f(x, y) = 1 + 3x+ 8y2 sur A.

12. Calculer et représenter l’ensemble d’intégration :∫ 1

0

(∫ √1−x2

0

y2dy

)
dx.



52 CHAPITRE 3. FONCTIONS DE PLUSIEURS VARIABLES

13. L’intégrale suivante a-t-elle un sens ? Si oui, la calculer.∫ +∞

0

e−x − e−2x

x
dx.

(Suggestion : transformer 1/x en une intégrale ; permuter alors les intégrales.)

14. L’intégrale suivante a-t-elle un sens ? Si oui, la calculer.∫ +∞

0

ln(x)

1− x2
dx.

(Suggestion : transformer ln(x) en une intégrale : 2 ln(x) =
∫ +∞
0

(x2/(1+x2y)−1/(1+y))dy ; permuter alors les intégrales.)

En déduire la valeur de
∫ 1

0
ln(x)/(1−x)dx et de

∫ 1

0
ln(x)/(1 +x)dx, puis la valeur de

∑+∞
m=1 1/m2

et de
∑+∞
m=1(−1)m/m2.

(Suggestions : Garnir, Fonctions de variables réelles II, pp 257-259.)

3.2 Résolution des exercices de la “liste type 2002/2003”

Exercice 1
• La fonction (x, y) 7→ f1(x, y) = 1√

1−(x2+y2)
est définie et dérivable sur

A = {(x, y) ∈ R2 : 1− (x2 + y2) > 0} = {(x, y) ∈ R2 : x2 + y2 < 1}

qui est l’ensemble des points intérieurs au cercle centré à l’origine et de rayon 1 (bord exclu).

• La fonction (x, y) 7→ f2(x, y) = ln(x− y) est définie et dérivable sur A = {(x, y) ∈ R2 : x− y > 0} qui
est l’ensemble hachuré ci-dessous (bord exclu).
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• La fonction (x, y) 7→ f3(x, y) = ln(|x| − |y|) est définie sur

A = {(x, y) ∈ R2 : |x| − |y| > 0} = {(x, y) ∈ R2 : |x| > |y|}.

L’analyse de cette condition donne

|y| < |x| ⇔ −|x| < y < |x| ⇔
{
−x < y < x si x ≥ 0
x < y < −x si x ≤ 0

;

A est donc l’ensemble hachuré ci-dessous (bords exclus).
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y = −x
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Pour déterminer le domaine de dérivabilité, il faut tenir compte du fait que la fonction x 7→ |x| n’est pas
dérivable en zéro et que la fonction X 7→ ln(X) est dérivable sur ]0,+∞[. Ainsi f3 est dérivable sur

{(x, y) ∈ R2 : |x| − |y| > 0, x 6= 0 et y 6= 0} = {(x, y) ∈ R2 : |x| − |y| > 0, y 6= 0}.

• La fonction (x, y) 7→ f4(x, y) = e
√
x2+y2 est définie sur R2 ; elle est dérivable sur

A = {(x, y) ∈ R2 : x2 + y2 > 0} = R2 \ {(0, 0)}

.
• La fonction (x, y) 7→ f5(x, y) = arcos(x2 + y2) est définie sur A = {(x, y) ∈ R2 : −1 ≤ x2 + y2 ≤ 1} et
dérivable sur B = {(x, y) ∈ R2 : −1 < x2 + y2 < 1}. Comme x2 + y2 ≥ 0 ∀x, y ∈ R, on a

A = {(x, y) ∈ R2 : x2 + y2 ≤ 1} et B = {(x, y) ∈ R2 : x2 + y2 < 1}.

L’ensemble A est l’ensemble des points situés à l’intérieur du cercle centré à l’origine et de rayon 1, le
bord étant compris ; pour l’ensemble B, le bord est donc exclu.

• La fonction(x, y) 7→ f6(x, y) = arctan(x/y) est définie et dérivable sur A = {(x, y) ∈ R2 : y 6= 0},
ensemble des points du plan dont on exclut ceux de l’axe des abscisses.
Calculons les dérivées partielles d’ordre 1 et 2 de f6 par rapport à x puis par rapport à y. On a

Dxf6(x, y) =
1

1 + (x/y)2
× 1

y
=

y

y2 + x2
; D2

xf6(x, y) =
−2xy

(y2 + x2)2

Dyf6(x, y) =
1

1 + (x/y)2
× (
−x
y2

) =
−x

y2 + x2
; D2

yf6(x, y) =
2xy

(y2 + x2)2
.

Dès lors,

D2
xf6(x, y) +D2

yf6(x, y) =
−2xy + 2xy

(y2 + x2)2
= 0.

Enfin,

DxDyf6(x, y) = Dx

[
−x

y2 + x2

]
=
−y2 − x2 + 2x2

(y2 + x2)2
=

x2 − y2

(y2 + x2)2
.

Exercice 2
• L’ensemble d’intégration est l’ensemble A = {(x, y) ∈ R2 : y ∈ [0, 1], x ∈ [y − 1, 1− y]} ; il se représente
de la façon suivante

-
X1 2−1−2

6Y

1

2

3
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y = −x+ 1

Si f est intégrable sur A, on a∫∫
A

f(x, y) dx dy =

∫ 1

0

(∫ 1−y

y−1

f(x, y) dx

)
dy.

Comme on peut aussi décrire cet ensemble par

A = {(x, y) ∈ R2 : x ∈ [−1, 0], y ∈ [0, x+ 1]} ∪ {(x, y) ∈ R2 : x ∈ [0, 1], y ∈ [0,−x+ 1]},
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si on permute l’ordre d’intégration, on a∫∫
A

f(x, y) dx dy =

∫ 0

−1

(∫ x+1

0

f(x, y) dy

)
dx+

∫ 1

0

(∫ −x+1

0

f(x, y) dy

)
dx.

• L’ensemble d’intégration est l’ensemble A = {(x, y) ∈ R2 : x ∈ [0, 1], y ∈ [0,−2x+ 2]} ; il se représente
de la façon suivante

-
X1 2−1

6Y

1

2

−1

A
A
A
A
A
A
A
A
A
A
A
A
A
A

y = −2x+ 2

Si f est intégrable sur A, on a∫∫
A

f(x, y) dx dy =

∫ 1

0

(∫ −2x+2

0

f(x, y) dy

)
dx.

Comme on peut aussi décrire cet ensemble par A = {(x, y) ∈ R2 : y ∈ [0, 2], x ∈ [0, 1 − y/2]}, si on
permute l’ordre d’intégration, on a∫∫

A

f(x, y) dx dy =

∫ 2

0

(∫ 1−y/2

0

f(x, y) dx

)
dy.

• L’ensemble d’intégration est l’ensemble A = {(x, y) ∈ R2 : x ∈ [1,+∞[, y ∈ [x+1,+∞[} ; il se représente
de la façon suivante

-

X1 2−1

6Y

1

2

3

−1

�
�
�
�
�
�
�
�
�
�
��y = x+ 1

x = 1

Si f est intégrable sur A, on a∫∫
A

f(x, y) dx dy =

∫ +∞

1

(∫ +∞

x+1

f(x, y) dy

)
dx.

Comme on peut aussi décrire cet ensemble par A = {(x, y) ∈ R2 : y ∈ [2,+∞], x ∈ [1, y − 1]}, si on
permute l’ordre d’intégration, on a∫∫

A

f(x, y) dx dy =

∫ +∞

2

(∫ y−1

1

f(x, y) dx

)
dy.
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Exercice 3
L’ensemble d’intégration est l’ensemble borné, fermé A = {(x, y) ∈ R2 : y ∈ [0, 3

√
π], x ∈ [y2,

3
√
π2]} ; il se

représente de la façon suivante

1 2 3 4

1

2

3

46
Y

-X

y =
√
x

x =
3
√
π2

Comme la fonction f : (x, y) 7→ sin(
√
x3) y est continue, elle y est intégrable et on a∫∫

A

f(x, y) dx dy =

∫ 3
√
π

0

(∫ 3√
π2

y2
sin(
√
x3) dx

)
dy.

Pour faciliter les calculs, permutons l’ordre d’intégration.
Puisque A peut aussi être décrit par A = {(x, y) ∈ R2 : x ∈ [0,

3
√
π2], y ∈ [0,

√
x]}, on a∫∫

A

f(x, y) dx dy =

∫ 3√
π2

0

(∫ √x
0

sin(
√
x3) dy

)
dx

=

∫ 3√
π2

0

√
x sin(

√
x3) dx

=

∫ 3√
π2

0

2

3
D(
√
x3) sin(

√
x3) dx

=

[
−2

3
cos(
√
x3)

] 3√
π2

0

= −2

3
cos(π) +

2

3
cos(0) =

4

3
.

Exercice 4
Considérons la représentation de l’ensemble A ci-dessous.

-
X1 2

6
Y

−1

1

2

3

4 y = 4

�
�
�
�
�
�
�
�
�

y = 2x

L’ensemble A est un ensemble borné, fermé décrit par A = {(x, y) ∈ R2 : x ∈ [0, 2], y ∈ [2x, 4]} et la
fonction (x, y) 7→ f(x, y) = x est continue sur A, donc intégrable sur A. Dès lors,∫∫

A

f(x, y) dx dy =

∫ 2

0

(∫ 4

2x

x dy

)
dx

=

∫ 2

0

[
xy

]y=4

y=2x

dx

=

∫ 2

0

(4x− 2x2)dx

=

[
2x2 − 2x3

3

]2

0

= 8− 16

3
=

8

3
.
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Exercice 5
Soit la représentation de l’ensemble A ci-dessous.

2 3 4 5

-2

-1.5

-1

-0.5

0.5

1
6
Y

-
X

y = cos(x)

L’ensemble A est un ensemble borné, fermé décrit par A = {(x, y) ∈ R2 : x ∈ [π/2, 3π/2], y ∈ [cos(x), 0]}
et la fonction (x, y) 7→ f(x, y) = 2y est continue sur A, donc intégrable sur A. On a donc

∫∫
A

f(x, y) dx dy =

∫ 3π/2

π/2

(∫ 0

cos(x)

2y dy

)
dx

=

∫ 3π/2

π/2

[
y2

]0

cos(x)

dx

= −
∫ 3π/2

π/2

cos2(x) dx

= −1

2

∫ 3π/2

π/2

(1 + cos(2x)) dx

= −1

2

[
x+

1

2
sin(2x)

]3π/2

π/2

= −1

2
(3π/2 + sin(3π)/2) +

1

2
(π/2 + sin(π)/2) = −3π

4
+
π

4
= −π

2
.

Exercice 6
L’ensemble d’intégration est l’ensemble borné, fermé A = {(x, y) ∈ R2 : x ∈ [0, 1], y ∈ [0, 2 − x]} et la
fonction (x, y) 7→ f(x, y) = x+ y est continue, donc intégrable sur A. Ainsi,

∫∫
A

(x+ y) dx dy =

∫ 1

0

(∫ 2−x

0

(x+ y) dy

)
dx

=

∫ 1

0

[
xy +

y2

2

]y=2−x

y=0

dx

=

∫ 1

0

(
2x− x2 + 2− 2x+

x2

2

)
dx

=

∫ 1

0

(
−x

2

2
+ 2

)
dx

=

[
−x

3

6
+ 2x

]1

0

= −1

6
+ 2 =

11

6
.

Exercice 7
L’ensemble d’intégration est l’ensemble borné, fermé A = {(x, y) ∈ R2 : x ∈ [0,

√
2], y ∈ [x,

√
4− x2]}

et la fonction (x, y) 7→ f(x, y) =
√
x2 + y2 est continue, donc intégrable sur A. Si on travaille en coor-

données polaires, cet ensemble, privé de l’origine, est décrit par A′ = {(r, θ) ∈]0, 2] × [π/4, π/2]} ; dans
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ces conditions, on a f(x, y) = f(r cos(θ), r sin(θ)) =
√
r2 cos2(θ) + r2 sin2(θ) =

√
r2 = r. Il en résulte que∫∫

A

√
x2 + y2 dx dy =

∫ 2

0

(∫ π/2

π/4

r2 dθ

)
dr

=

∫ 2

0

r2 dr

∫ π/2

π/4

1 dθ

=

[
r3

3

]2

0

× π

4
=

8

3
× π

4
=

2π

3
.

Exercice 8
L’ensemble d’intégration est l’ensemble borné, fermé A = {(x, y) ∈ R2 : x ∈ [0, 2], y ∈ [x2, 4]} et la
fonction (x, y) 7→ f(x, y) = x√

1+y2
est continue, donc intégrable surA. L’ensemble A peut aussi être

décrit sous la forme A = {(x, y) ∈ R2 : y ∈ [0, 4], x ∈ [0,
√
y]}. Ainsi,∫∫

A

x√
1 + y2

dx dy =

∫ 4

0

(∫ √y
0

x√
1 + y2

dx

)
dy

=

∫ 4

0

[
x2

2
√

1 + y2

]x=
√
y

x=0

dx

=

∫ 4

0

y

2
√

1 + y2
dx

=
1

4

∫ 4

0

D(1 + y2).
1√

1 + y2
dx

=
1

4

[
2
√

1 + y2
]4

0
=

1

2
(
√

17− 1).

Exercice 9
La fonction f : (x, y) 7→ xe−x

2

/(x2 + y) est continue sur {(x, y) ∈ R2 : x2 + y 6= 0} donc sur son ensemble
d’intégration A, ensemble non borné dont la représentation graphique est la partie hachurée du plan
ci-dessous.

-2 -1 1 2

1
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-
X
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y = x2

Etudions l’intégabilité de f sur A sachant que |f(x, y)| = f(x, y) ∀(x, y) ∈ A.

Pour x fixé dans ]0,+∞[, la fonction g : y 7→ xe−x
2

/(x2 + y) est continue sur le fermé borné [0, x2]. Elle
est donc intégrable sur cet ensemble et on a∫ x2

0

xe−x
2

x2 + y
dy =

[
xe−x

2

ln(x2 + y)

]x2

0

= xe−x
2

(ln(2x2)− ln(x2)) = xe−x
2

ln(2).

Etudions l’intégrabilité de la fonction h : x 7→ xe−x
2

ln(2) continue sur [0,+∞[. Comme h est continu sur
[0, t] ∀t > 0, on a∫ t

0

xe−x
2

ln(2) dx = − ln(2)

2

∫ t

0

−2xe−x
2

dx = − ln(2)

2

[
e−x

2

]t
0

= − ln(2)

2
(e−t

2

− 1).
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Dès lors,

lim
t→+∞

(
− ln(2)

2
(e−t

2

− 1)

)
=

ln(2)

2
− ln(2)

2
lim

t→+∞
e−t

2

=
ln(2)

2

puisque lim
t→+∞

e−t
2

= 0 par application du théorème de la limite des fonctions composées.

Comme cette limite est finie, h est intégrable en +∞ donc sur [0,+∞[.

Ainsi, f est intégrable sur A et comme la fonction f est positive sur A, on obtient∫ +∞

0

(∫ x2

0

xe−x
2

x2 + y
dy

)
dx =

ln(2)

2
.

Exercice 10
La fonction f : (x, y) 7→ f(x, y) = e−(x2+y2) est une fonction à variables séparées et l’ensemble d’intégration
A se présente aussi sous la forme d’un produit cartésien d’intervalles :

f(x, y) = g1(x).g2(y) x ∈ [0,+∞[, y ∈ [0,+∞[, g1 = g2 : t 7→ e−t
2

.

Le calcul de l’intégrale de cette fonction sur A est traité dans les notes de cours et effectué au cours.

3.3 Solutions des exercices de la “liste type 2003/2004”

Exercice 1

dom f = {(x, y) ∈ R2 : 4−x2−y2 > 0}, ensemble des points du plan intérieurs au cercle centré à l’origine
et de rayon 2 (“bord” exclu).
dom g = {(x, y) ∈ R2 : |x| + |y| − 1 > 0}, ensemble des points du plan extérieurs au carré ayant pour
sommets les points de coordonnées (1, 0), (0, 1), (−1, 0) et (0,−1) (“bords” exclus).

Exercice 2

Domaine de définition et de dérivabilité = R2 \ {(0, 0)}, ensemble de tous les points du plan excepté
l’origine.

Dxf(x, y) =
−x2 + y2

(x2 + y2)2
Dyf(x, y) =

−2xy

(x2 + y2)2
.

Domaine de définition et de dérivabilité = {(x, y) ∈ R2 : x2 + y2/4 − 1 > 0}, ensemble des points
du plan extérieurs à l’ellipse centrée à l’origine et dont les sommets sont les points de coordonnées
(1, 0), (0, 2), (−1, 0) et (0,−2) (“bord” exclu).

Dxf(x, y) =
2x

x2 + y2/4− 1
Dyf(x, y) =

y

2 (x2 + y2/4− 1)
.

Exercice 3

Fonction indéfiniment continûment dérivable sur R2 \ {(0, 0)} ; D2
xf(x, y) +D2

yf(x, y) = 0.

Exercice 4

Fonctions dérivables sur R2 ; Drf(r, θ)Dθg(r, θ)−Dθf(r, θ)Drg(r, θ) = r.

Exercice 5

Les ensembles d’intégration sont les parties hachurées du plan.

a)
∫ 1

0
(
∫ 1

2y−1
f(x, y)dx)dy
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-
X

6

Y

−2 −1 1 2
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y = x+1
2

x = 1

b)
∫ 1

0
(
∫ −√1−x2

−1
f(x, y)dy)dx+

∫ 2

1
(
∫ 1−x
−1

f(x, y)dy)dx

-1 1 2

-1

1

-
X

6Y

y = 1− x
y = −1

Exercice 6

a) f est continu sur l’ensemble fermé borné A donc intégrable ; l’intégrale vaut 3π/8 +
√

2/4.

b) f est continu sur l’ensemble fermé borné A donc intégrable ; l’intégrale vaut 1/12.

Exercice 7

A est l’ensemble hachuré.
a) f est continu sur l’ensemble fermé borné A donc intégrable ; l’intégrale vaut e/2− 1.

1 2 3 4

-1

1

2

0 -
X

6Y

y = ln(x)

x = e

b) f est continu sur l’ensemble fermé borné A donc intégrable ; l’intégrale vaut (e− 1)/2.

- X

6
Y

�
�
�
�
�
�

y = x

1 2

1

c) ∀(x, y) ∈ A : |f(x, y)| = f(x, y). Pour x fixé dans [1, 2], la fonction y 7→ ye−xy est intégrable sur [0,+∞[

car elle y est continue et lim
y→+∞

(y2 . ye−xy) = 0. De plus,
∫ +∞

0
ye−xydy = 1/x2 et la fonction x 7→ 1/x2

est continue sur le fermé borné [1, 2] donc intégrable. L’intégrale donnée vaut 1/2.
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- X

6
Y x = 1

1

x = 2

2

1

�
��
�
��
�
�

�
��

d) ∀(x, y) ∈ A : |f(x, y)| = f(x, y). Pour x fixé dans [1,+∞[, la fonction y 7→ eyx
2

est continue sur le fermé

borné [1/x3, 1/x2] donc intégrable et on a
∫ 1/x2

1/x3 e
yx2

dy = (e − e1/x)/x2. La fonction x 7→ (e − e1/x)/x2

est intégrable sur [1,+∞[ car elle y est continue et lim
x→+∞

(
x2 × 1

x2

(
e− e1/x

))
= e − 1. L’intégrale

donnée vaut 1.

1 2 3 4

-0.5

0.5

1

1.5

2

2.5

3

-
X

6Y

y = 1
x2

y = 1
x3

Exercice 8

a) L’ensemble d’intégration A est l’ensemble des points situés dans le quatrième quadrant, intérieurs
au cercle centré à l’origine et de rayon 1. f est continu sur l’ensemble fermé borné A donc intégrable ;
l’intégrale vaut π(1− 2/e)/2.

b) L’ensemble d’intégration A est l’ensemble des points du premier quadrant situés entre le cercle centré
au point de coordonnées (1/2, 0) de rayon 1/2 et le cercle centré à l’origine de rayon 1. f est continu
sur l’ensemble fermé borné A donc intégrable ; l’intégrale vaut π/8 ; ce réel est la mesure de l’aire de la
surface A.

Suggestion d’exercices supplémentaires
Exercice 1

L’ensemble d’intégration A est l’ensemble des points du premier quadrant situés à l’intérieur du cercle
centré à l’origine et de rayon 1. Comme f est continu sur A, ensemble fermé borné, f y est intégrable ;
l’intégrale vaut π/16.

Exercice 2

La fonction est continue sur ]0,+∞[ et on vérifie qu’elle est intégrable en 0 et +∞ en utilisant le critère
en θ par exemple. L’intégrale vaut ln(2).

Exercice 3

La fonction est continue sur ]0, 1[ ∪ ]1,+∞[ et on vérifie qu’elle est intégrable en 0, 1 et +∞. L’intégrale
vaut −π2/4. De plus, si

X =

∫ 1

0

ln(x)/(1− x)dx et Y =

∫ 1

0

ln(x)/(1 + x)dx, on a

 X + Y = 2

∫ 1

0

ln(x)/(1− x2)dx

X − Y = X/2

.

Comme

∫ 1

0

ln(x)/(1− x2)dx =

∫ +∞

1

ln(x)/(1− x2)dx =
1

2

∫ +∞

0

ln(x)/(1− x2)dx = −π2/8, on obtient
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X = −π2/6 et Y = −π2/12.

Enfin,

+∞∑
m=1

1/m2 = π2/6 et

+∞∑
m=1

(−1)m/m2 = −π2/12.

3.4 Solutions des exercices de la “liste type 2004/2005”

Exercice 1

— dom (f) = {(x, y) ∈ R2 : x2 − y2 + 9 ≥ 0} : ensemble des points situés entre les branches de
l’hyperbole d’équation x2 − y2 + 9 = 0 ayant pour sommets les points de coordonnées (0, 3) et
(0,−3), les points de la courbe étant compris.

— dom (g) = {(x, y) ∈ R2 : |x + y| − 1 > 0} : ensemble des points situés à l’extérieur des droites
d’équation x+ y = 1 et x+ y = −1, les points des droites étant exclus.

— dom (h) = {(x, y) ∈ R2 : |x + y| ≥ 1} : même ensemble de points que pour g mais les points des
droites sont inclus.

Exercice 2

— Pour f , les deux domaines sont égaux à R2 \ {(0, 0)}, ensemble des points du plan dont on exclut
l’origine. On a

Dxf(x, y) =
x

x2 + y2
Dyf(x, y) =

y

x2 + y2

D2
xf(x, y) =

y2 − x2

(x2 + y2)2
D2
yf(x, y) =

x2 − y2

(x2 + y2)2
DxDyf(x, y) = DyDxf(x, y) =

−2xy

(x2 + y2)2
.

— Pour g, dom (g) = {(x, y) ∈ R2 : |x| ≤ |y|} tandis que le domaine d’infinie dérivabilité est
{(x, y) ∈ R2 : |x| < |y|}. Le domaine de définition de g est l’ensemble des points situés entre les
droites d’équation x + y = 0 et x − y = 0 et comprenant notamment les points de coordonnées
(0, 1) et (0,−1), les points des droites étant inclus mais non le point de coordonnées (0, 0) ; pour
le domaine d’infinie dérivabilité, les points des droites sont exclus. On a

|x|Dxg(x, y) + |y|Dyg(x, y) =

{
0 si xy > 0

−2x/
√
y2 − x2 si xy < 0

— Pour h, les deux domaines sont égaux à {(x, y) ∈ R2 : x2 + y + 1 > 0} : ensemble des points
extérieurs à la parabole d’équation y = −x2 − 1, les points de la courbe étant exclus. On a

Dxh(x, y) =
x

x2 + y + 1
Dyh(x, y) =

1

2(x2 + y + 1)
.

Exercice 3

La fonction F est dérivable sur ]1/e, 1[ et on a DF (t) = (D1f)(f1,f2) × 1/t− (D2f)(f1,f2) × et.

Exercice 4

a) L’intégrale donnée est égale à

∫ 1

−1

(∫ −2y

−2

f(x, y) dx

)
dy.

-
X

6
Y

−2 −1 0 1 2 3

−1

1

2
x = −2

y = −1

y = −x2
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b) L’intégrale donnée est égale à

∫ −1

−4

(∫ 0

−(y+4)/3

f(x, y) dx

)
dy +

∫ 0

−1

(∫ 0

−1

f(x, y) dx

)
dy.

- X

6Y

−2 0 1 2 3

−4

−3

−2

1

x = −1

y = −3x− 4

c) L’intégrale donnée est égale à

∫ √2

0

(∫ x

0

f(x, y) dy

)
dx+

∫ 2

√
2

(∫ √4−x2

0

f(x, y) dy

)
dx.

-2 -1 1 2 3

-2

-1

1

2

3

-

X

6Y
y = x

Exercice 5

Si A est l’ensemble hachuré alors
∫∫
A
f(x, y) dx dy = 8/9.

-2 -1 1 2

-2

-1

1

2

-
X

6Y d1

d2

d3 d4

Exercice 6

L’intégrale vaut
3e2

4
− e

2
− 5

4
.

Exercice 7

a) L’intégrale vaut
1

2
− 2

π
+

4

π2
b) L’intégrale vaut

1

3
.

Exercice 8

a) A = {(x, y) ∈ R2 : x ∈ [−1, 1], y ∈ [−1 + x2,−x2 + 1] et l’intégrale vaut 0.
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b) A =
{

(x, y) ∈ R2 : x ∈
[
0, π
√

3/3
]
, y ∈ [0, x]

}
et l’intégrale vaut

π2

6
− 1

2
sin

(
π2

3

)
.

Exercice 9

a) L’intégrale vaut ln(2)/2 et l’ensemble d’intégration est l’ensemble
hachuré.

-1 1 2 3

-1

1

2

3

4

- X

6Y y = x2

y = −x2

@@@@@
@@
@

@
@

b) L’ensemble d’intégration est le même que ci-dessus et l’intégrale vaut ln(2)
√
π/2.

c) L’intégrale vaut π/2 et l’ensemble d’intégration est l’ensemble hachuré.

- X

6Y

−2 0 1 2 3

−3

−2

2

y = 1

y = x

d) L’intégrale vaut 2 ln(2)−2 et l’ensemble d’intégration est l’ensemble hachuré.

-2 -1 1 2

-1

1

2

3

4

-
X

6
Y

y = x2

x = −1

x = 1

Exercice 10

L’intégrale vaut 4π/3.

Exercice 11

L’intégrale vaut 33π/2.

Exercice 12

L’ensemble d’intégration est le premier quadrant du cercle trigonométrique et l’intégrale vaut π/16.

Exercice 14

L’intégrale vaut ln(2).

Exercice 15 ∫ +∞

0

ln(x)

1− x2
dx = −π

2

4

∫ 1

0

ln(x)

1− x
dx = −π

2

6

∫ 1

0

ln(x)

1 + x
dx = −π

2

12
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+∞∑
m=1

1

m2
=
π2

6

+∞∑
m=1

(−1)m

m2
= −π

2

12
.



Chapitre 4

Approximations polynomiales

4.1 Exercices de base sur le chapitre 3 (partim B)

Dans cette section figurent quelques exercices de base (dont il a été question durant les années
académiques mentionnées).

Dans tout ce qui suit, sauf mention du contraire, x est l’inconnue réelle.

Liste 2002/2003

1. Déterminer l’approximation polynomiale à l’ordre n au point x0 pour chacune des fonctions
données ci-dessous.

f(x) = x sin(x), n = 3, x0 = 0, f(x) =
√

1 + x, n = 2, x0 = 0, f(x) = ln(x+ 1), n = 3, x0 = 0
f(x) = ln(x), n = 2, x0 = 2

2. Estimer le reste de l’approximation polynomiale à l’ordre 2 et à l’ordre 3 en 0 de la fonction
f(x) = sin(x), x ∈ R.

3. a) Déterminer la forme trigonométrique des complexes suivants :

i, 1 + i,
1

i
.

b) Déterminer les racines quatrièmes du complexe −1. Représenter ces racines.

Liste 2003/2004

1. Déterminer l’approximation polynomiale de f à l’ordre n au point x0 dans chacun des cas suivants.

f1(x) = x2 cos(x), x0 = 0, n = 4 f2(x) = tan(x), x0 = π, n = 4
f3(x) = tan(x), x0 = π

4 , n = 3 f4(x) =
√

2x+ 1, x0 = 0, n = 2
f5(x) = ln(1− x2), x0 = 0, n = 2 f6(x) = x arcos(x), x0 = 0, n = 2

2. Estimer le reste de l’approximation polynomiale à l’ordre 2 en 0 de la fonction cos. Représenter la
fonction et cette approximation dans le même repère orthonormé.

3. Montrer que le reste de l’approximation polynomiale à l’ordre n en 0 de la fonction cos converge
vers 0 si n→ +∞. En déduire le développement de cos en série de puissances de x.

4. Déterminer les racines cubiques du complexe −2 et en donner la représentation géométrique.

5. Déterminer les racines cubiques du complexe 1+i et du complexe −i. En donner une représentation
géométrique.

65
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Liste 2004/2005

1. Dans chacun des cas suivants, déterminer l’approximation polynomiale à l’ordre n en x0 pour la
fonction donnée explicitement.

f1(x) = e−2x, x0 = 0, n = 0, 1, 2, 3 f2(x) = xe−2x, x0 = 0, n = 0, 1, 2, 3
f3(x) = 1/(1 + x2), x0 = 0, n = 0, 1, 2 f4(x) = arctan(x), x0 = 0, n = 0, 1, 2, 3
f5(x) = ln(x), x0 = 1, n = 0, 1, 2, 3 f6(x) = (1 + x)3, x0 = 0, n = 0, 1, 2, 3, 4

Représenter f3 et son approximation à l’ordre 2 en 0.

2. Estimer le reste de l’approximation polynomiale à l’ordre 4 en 0 de la fonction sin. Représenter la
fonction et cette approximation dans le même repère orthonormé.

3. Déterminer l’approximation polynomiale à l’ordre 0, 1, 2, 3 en 0 des fonctions données explicitement
par 1

g1(x) = ln

(
x+ 1

1− x

)
, g2(x) =

−3x+ 2

2x2 − 3x+ 1
.

4. Déterminer les racines cubiques du complexe i et en donner la représentation géométrique.

5. Déterminer les racines quatrièmes du complexe −16. En donner une représentation géométrique.

Déterminer les racines carrées et les racines quatrièmes du complexe (i
√

3 − 1)/2. En donner la
représentation géométrique.

6. Un tunnel d’une longueur l relie deux points de la surface de la Terre. Si R désigne le rayon de la
Terre, déterminer une approximation de la profondeur maximale de ce tunnel.

7. L’approximation à l’ordre 3 d’une fonction en un point est toujours
2 un polynôme de degré 3
2 une fraction rationnelle dont le degré du numérateur est strictement inférieur à celui du dénominateur
2 un nombre réel plus petit ou égal à 3
2 une fonction
2 aucune des propositions précédentes n’est correcte.

4.2 Résolution des exercices de la “liste type 2002/2003”

Exercice 1
— La fonction x 7→ f(x) = x sin(x) est indéfiniment continûment dérivable sur R et on a

Df(x) = sin(x) + x cos(x), D2f(x) = 2 cos(x)− x sin(x), D3f(x) = −3 sin(x)− x cos(x)

sur R, donc
f(0) = 0, Df(0) = 0, D2f(0) = 2, D3f(0) = 0.

Dès lors, l’approximation demandée est le polynôme

P3(x) = f(0) + x Df(0) +
x2

2
D2f(0) +

x3

6
D3f(0) = x2.

— La fonction x 7→ f(x) =
√

1 + x est indéfiniment continûment dérivable sur ]− 1,+∞[ et on a

Df(x) =
1

2
(1 + x)−

1
2 , D2f(x) = −1

4
(1 + x)−

3
2

sur ]− 1,+∞[, donc

f(0) = 1, Df(0) =
1

2
, D2f(0) = −1

4
.

Dès lors, l’approximation demandée est le polynôme

P2(x) = f(0) + x Df(0) +
x2

2
D2f(0) = 1 +

x

2
− x2

8
.

1. Suggestion. Utiliser le développement de ln(1 + x) et ln(1 − x) pour g1 et décomposer en fractions simples pour g2.
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— La fonction x 7→ f(x) = ln(x+ 1) est indéfiniment continûment dérivable sur ]− 1,+∞[ et on a

Df(x) = (x+ 1)−1, D2f(x) = −(x+ 1)−2, D3f(x) = 2(x+ 1)−3

sur ]− 1,+∞[, donc

f(0) = 0, Df(0) = 1, D2f(0) = −1, D3f(0) = 2.

Dès lors, l’approximation demandée est le polynôme

P3(x) = f(0) + x Df(0) +
x2

2
D2f(0) +

x3

6
D3f(0) = x− x2

2
+
x3

3
.

— La fonction x 7→ f(x) = ln(x) est indéfiniment continûment dérivable sur ]0,+∞[ et on a

Df(x) = x−1, D2f(x) = −x−2

sur ]0,+∞[, donc

f(2) = ln(2), Df(2) =
1

2
, D2f(2) = −1

4
.

Dès lors, l’approximation demandée est le polynôme

P2(x− 2) = f(2) + (x− 2) Df(2) +
(x− 2)2

2
D2f(2) = ln(2) +

x− 2

2
− (x− 2)2

8
.

Exercice 2

La fonction x 7→ f(x) = sin(x) étant réelle et indéfiniment continûment dérivable sur R, vu le développement
limité de Taylor, on sait que le reste de l’approximation polynomiale à l’ordre 2 est R2(x) = x3D3f(u0)/6,
x ∈ R et u0 strictement compris entre 0 et x. Puisque Df(x) = cos(x), D2f(x) = − sin(x) et
D3f(x) = − cos(x), on a

R2(x) = −x
3

6
cos(u0) et |R2(x)| ≤ |x|

3

6
, x ∈ R.

De même, le reste de l’approximation à l’ordre 3 est R3(x) = x4 D4f(u0)/24 = x4 sin(u0)/24, x ∈ R et
u0 strictement compris entre 0 et x puisque D4f(x) = sin(x). Mais comme l’approximation de la fonction
sinus à l’ordre 4 est la même que l’approximation à l’ordre 3, en utilisant le développement de Taylor, on
obtient

R3(x) = R4(x) =
x5

120
D5f(u0) =

x5

120
cos(u0) et |R3(x)| ≤ |x|

5

120
, x ∈ R.

Exercice 3

a) Forme trigonométrique d’un nombre complexe
— La forme trigonométrique de i est ei π/2 car i = 0+ i . 1 et donc r =

√
02 + 12 = 1. De plus, comme

cos(θ) = 0 et sin(θ) = 1 avec θ ∈ [0, 2π[, on a θ = π/2.
— Considérons z = 1 + i ; on a |z| =

√
12 + 12 =

√
2 et, dès lors, z =

√
2
(√

2/2 + i
√

2/2
)
. Ainsi,

cos(θ) = sin(θ) =
√

2/2 avec θ ∈ [0, 2π[, ce qui donne θ = π/4. Pour conclure, la forme trigo-
nométrique de 1 + i est donc

√
2 ei π/4.

— Le complexe 1/i = −i s’écrit sous forme trigonométrique ei 3π/2 puisque r =
√

02 + (−1)2 =
1, cos(θ) = 0 et sin(θ) = −1 avec θ ∈ [0, 2π[.

b) La forme trigonométrique de−1 est ei π. Ainsi, ses racines quatrièmes sont données par zk = ei (π+2kπ)/4

avec k = 0, 1, 2, 3. Dès lors, on a

z0 = ei π/4, z1 = ei 3π/4, z2 = ei 5π/4 et z3 = ei 7π/4.

Ces racines quatrièmes se représentent sur le cercle centré à l’origine de rayon 1 et sont les sommets d’un
carré, points communs au cercle et aux droites d’équation y = x et y = −x.
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-
X

−1 1

6
Y

−1

1 rz0rz1

r
z3

r
z2

4.3 Solutions des exercices de la “liste type 2003/2004”

Exercice 1

f1 : P4(x) = x2 − x4/2, x ∈ R.
f2 : P4(x− π) = x− π + (x− π)3/3, x ∈ ]π/2, 3π/2[.

f3 : P3(x− π/4) = 1 + 2(x− π/4) + 2(x− π/4)2 + 8(x− π/4)3/3, x ∈ ]− π/2, π/2[.
f4 : P2(x) = 1 + x− x2/2, x ∈ ]− 1/2,+∞[.
f5 : P2(x) = −x2, x ∈ ]− 1, 1[.
f6 : P2(x) = πx/2− x2, x ∈ ]− 1, 1[.

Exercice 2

R2(x) = x3 sin(u)/6 avec u strictement compris entre 0 et x ; on a donc |R2(x)| ≤ x3/6, x ∈ R.

-6 -4 -2 2 4 6

-4

-3

-2

-1

1

-
X

6
Y

y = cos(x)

y = 1− x2/2

Exercice 3

cos(x) =

+∞∑
k=0

(−1)k
x2k

(2k)!

Exercice 4

z0 = 3
√

2 ei π/3, z1 = 3
√

2 ei π, z2 = 3
√

2 ei 5π/3.
Représentation : sommets du triangle équilatéral inscrit dans le cercle centré à l’origine et de rayon 3

√
2.

Un des sommets appartient à l’axe des X, son abscisse étant négative.
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Exercice 5

Pour 1 + i : z0 = 6
√

2 ei π/12, z1 = 6
√

2 ei 3π/4, z2 = 6
√

2 ei 17π/12.
Représentation : sommets du triangle équilatéral inscrit dans le cercle centré à l’origine et de rayon 6

√
2.

Un des sommets appartient à la deuxième bissectrice et est situe dans le second quadrant.

Pour −i : z0 = ei π/2, z1 = ei 7π/6, z2 = ei 11π/6.
Représentation : sommets du triangle équilatéral inscrit dans le cercle centré à l’origine et de rayon 1. Un
des sommets appartient à l’axe des Y , son ordonnée étant positive.

4.4 Solutions des exercices de la “liste type 2004/2005”

Exercice 1

P0(x− x0) P1(x− x0) P2(x− x0) P3(x− x0) P4(x− x0)

f1 1 1− 2x 1− 2x+ 2x2 1− 2x+ 2x2 − 4

3
x3, x ∈ R

f2 0 x x− 2x2 x− 2x2 + 2x3, x ∈ R

f3 1 1 1− x2, x ∈ R

f4 0 x x x− x3

3
, x ∈ R

f5 0 x− 1 x− 1− (x− 1)2

2
x− 1− (x−1)2

2 + (x−1)3

3 , x ∈]0,+∞[

f6 1 1 + 3x 1 + 3x+ 3x2 1 + 3x+ 3x2 + x3 1 + 3x+ 3x2 + x3, x ∈ R

-3 -2 -1 1 2 3

-3

-2

-1

1

2

-
X

6Y

f3

y = 1− x2

Exercice 2

R4(x) = cos(u0)x5/5! avec u0 strictement compris entre 0 et x.
Approximation : P4(x) = x− x3/6, x ∈ R.
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-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

-
X

6
Y

y = sin(x)

y = x− x3/6

R4(x) =
x5

5 !
(u5

0 cos(u0)− 5 u4
0 sin(u0)− 20 u3

0 cos(u0) + 60 u2
0 sin(u0) + 120 u0 cos(u0)− 120 sin(u0)) . u−6

0

avec u0 strictement compris entre 0 et x.
Approximation : P4(x) = 1− x2/6 + x4/120, x ∈ R.

-3 -2 -1 1 2 3

-1

-0.5

0.5

1

- X

6Y

y = sin(x)/x

y = 1− x2/6 + x4/120

Exercice 3

P0(x) P1(x) P2(x) P3(x)

g1 0 2x 2x 2x+ 2x3/3, x ∈ ]− 1, 1[

g2 2 2 + 3x 2 + 3x+ 5x2 2 + 3x+ 5x2 + 9x3, x ∈ R \ {1/2, 1}

Exercice 4

Les racines cubiques de i sont z0 = ei π/6, z1 = ei 5π/6, z2 = ei 3π/2. Ce sont les sommets du triangle
équilatéral inscrit dans le cercle trigonométrique dont le sommet correspondant à z2 est le point de coor-
données (0,−1).

Exercice 5

Les racines quatrièmes de −16 sont z0 = 2ei π/4, z1 = 2ei 3π/4, z2 = 2ei 5π/4, z3 = 2ei 7π/4. Ce sont les
sommets du carré inscrit dans le cercle centré à l’origine et de rayon 2, z0 correspondant au point de
coordonnées (

√
2,
√

2).
Les racines carrées de (i

√
3−1)/2 sont z0 = eiπ/3, z1 = ei 4π/3. Ce sont les points diamétralement opposés

du cercle trigonométrique dont l’un a pour coordonnées (1/2,
√

3/2).
Les racines quatrièmes de (i

√
3 − 1)/2 sont z0 = ei π/6, z1 = ei 2π/3, z2 = ei 7π/6, z3 = ei 5π/3. Ce sont

les sommets du carré inscrit dans le cercle trigonométrique, z0 correspondant au point de coordonnées
(
√

3/2, 1/2).

Exercice 6

l2/8R

Exercice 7

une fonction.
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Chapitre 5

Listes d’exercices 2025 - 2026 :
correction (Math1009)

Liste 1 : Rappels et calcul matriciel

I. Nombres complexes et résolution d’équations

1. Déterminer les partie réelle, imaginaire, le conjugué et le module de chacun des
complexes ci-dessous.

z1 =
i+ 1

i− 1
, z2 = cos(2) + i sin(2), z3 =

(i+ 2)3

2− i
.

z <z =z z |z|
z1 0 −1 i 1
z2 cos(2) sin(2) cos(2)− i sin(2) 1

z3 2/5 11/5 (2− 11i)/5
√

5

2. Résoudre les équations suivantes

(1) z2 + 9 = 0 (2) z3 = 1 (3) z2 + z + 1 = 0.

On a (1) S = {−3i, 3i} (2) S = {1, (−1 + i
√

3)/2, (−1− i
√

3)/2}
(3) S = {(−1 + i

√
3)/2, (−1− i

√
3)/2}

II. Opérations entre matrices

1. Soient les matrices A, B, C données par

Ã =

 2 i
1 + i −1
3/i (2− i)2

 , B =

 2 0
1 4
i −2

 , C =

(
3 1/(i+ 1)
−2i i/2

)
.

Si possible, effectuer les opérations suivantes (et simplifier la réponse au maximum).
Si cela ne l’est pas, en expliquer la raison.

1) A+B, 2) A+ B̃, 3) A.B, 4) A.B + C, 5) B.A, 6) C.Ã, 7) A∗.C, 8) i.C, 9) (i.A)∗.

1) A+B est impossible à calculer car les matrices n’ont pas le même format.
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2) A+ B̃ =

(
4 2 + i −2i
i 3 1− 4i

)
3) A.B =

(
8 + i 4 + 10i
3 + 5i −10 + 8i

)

4)A.B+C =

(
11 + i (9 + 19i)/2

3 + 3i (−20 + 17i)/2

)
5)B.A =

 4 2 + 2i −6i
2 + 4i −3 + i 12− 19i

0 1 + i −3 + 8i


6) CÃ est impossible à calculer car le nombre de colonnes (2) de C n’est pas égal au nombre de

lignes (3) de Ã.

7) A∗C =

 4 3/2− i
3− i −3i/2

8 + 3i (−1 + 6i)/2

 8) iC =

(
3i (1 + i)/2

2 −1/2

)

9) (iA)∗ =

 −2i −1
−1− i i

3 4− 3i



2. Soit A une matrice carrée de dimension 3 telle que Aij = 1, ∀i, j et B =

 1 0 0
0 1 0
0 0 0

 .

Calculer C = AB −BA et en déduire la forme de C̃ + C.

On a C =

 0 0 −1
0 0 −1
1 1 0

 et C̃ + C est la matrice nulle de dimension 3.

3. On donne la matrice A =

(
2 −1
3 0

)
. Montrer que A2 − 2A+ 3 1 = 0.

4. Déterminer la forme générale des matrices qui commutent avec

a) A =

(
0 1
2 0

)
b) B =

(
a 0
0 b

)
(a, b ∈ C)

La forme générale des matrices qui commutent avec A est du type

(
a b
2b a

)
(a, b ∈ C).

La forme générale des matrices qui commutent avec B est du type

(
α 0
0 β

)
(α, β ∈ C) si a 6= b.

Si a = b alors toute matrice de dimension 2 commute avec B car B est dans ce cas un multiple de
la matrice identité.
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Liste 2 : calcul matriciel (2)

I. Déterminants

1. Calculer le plus rapidement possible le déterminant de chacune des matrices suivantes.

A =
1

3

(
2− i 3i
−1 4

)
, B =

(
1 −2i

(i+ 1)2 5

)
, C =

 −3 1 6
6 2 3
3 1 −6

 ,

D =
1

2

 1 3 −3
3 −3 1
−3 1 3

 , E =

 1 sin2(a) cos2(a)
1 sin2(b) cos2(b)
1 sin2(c) cos2(c)

 (a, b, c ∈ R).

Le déterminant de A vaut (8− i)/9, celui de B vaut 1, celui de C vaut 90, celui de D vaut −7/2
et celui de E est nul.

2. Le déterminant de chacune des matrices suivantes est un polynôme en x ∈ C. Factoriser
ce polynôme en un produit de facteurs du premier degré.

A =

(
i x+ 2
−x −i

)
, B =

(
x −4
1 x

)
, C =

 x 0 3
0 x+ 1 x
1 0 x− 2

 , D =


0 x 0 0 0
x x 1 1 1
0 1 x 1 1
0 1 1 x 1
0 1 1 1 x

 .

Le déterminant de A est égal à (x+ 1)2 ; celui de B est égal à
(x+ 2i)(x− 2i), celui de C vaut (x+ 1)2(x− 3) et celui de D vaut −x2(x+ 2)(x− 1)2.

II. Inversion de matrices

Calculer (si elle existe) la matrice inverse de chacune des matrices suivantes (on donne
α ∈ R).

A =

(
0 1
−1 −2

)
, B =

(
2 8
1 4

)
, C =

(
sin(α) cos(α)
cos(α) − sin(α)

)
,

D =

 −1 0 −1
0 −1 1
i 1 0

 , E =

 −1 0 −i
0 −1 1
i 1 0

 .

• La matrice inverse de A est A−1 =

(
−2 −1
1 0

)
• La matrice B ne possède pas d’inverse car son déterminant est nul.
• La matrice inverse de C est égale à son inverse.

• La matrice inverse de D est D−1 =
1 + i

2

 −1 −1 −1
i i 1
i 1 1


• La matrice inverse de E est E−1 =

1

2

 −1 −i −i
i −1 1
i 1 1


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Liste 3 : calcul matriciel (3)

I. Diagonalisation

1. Déterminer les valeurs propres des matrices suivantes et en donner la multiplicité.

A =

(
i −i
i i

)
, B =

 2 1 10
0 3 5
0 0 2

 , C =

 1 3 0
3 −2 −1
0 −1 1

 .

Les valeurs propres de la matrice A sont −1 + i et 1 + i ; ces valeurs propres sont simples (c’est-à-
dire de multiplicité 1).
Les valeurs propres de la matrice B sont 2 (valeur propre double) et 3 (valeur propre simple).
Les valeurs propres de la matrice C sont −4, 1 et 3 ; ces valeurs propres sont simples.

2. Rechercher les valeurs propres et les vecteurs propres des matrices suivantes. Ces
matrices sont-elles diagonalisables ? Pourquoi ? Si elles le sont, en déterminer une
forme diagonale ∆, ainsi qu’une matrice inversible S qui y conduit.

A =

(
2 3
4 1

)
, B =

 −1 0 0
1 1 0
−2 0 −1

 , C =

 −1 0 0
1 1 0
0 0 −1

 , D =

 1 3 0
3 −2 −1
0 −1 1

 .

Calculer les produits AS et S∆. Comparer les matrices obtenues. N’aurait-on pas pu
prévoir ce resultat sans effectuer les calculs ? Pourquoi ?

• Matrice A : 2 valeurs propres simples : −2 et 5 ; la matrice est donc diagonalisable.

Les vecteurs propres relatifs à la valeur propre −2 sont du type c

(
3
−4

)
, c ∈ C0 et ceux relatifs

à la valeur propre 5 sont du type c′
(

1
1

)
, c′ ∈ C0.

On a, par exemple, ∆ = S−1AS =

(
−2 0
0 5

)
avec S =

(
3 1
−4 1

)
.

Dès lors, en effectuant les produits, on a AS = S∆ =

(
−6 5
8 5

)
. Comme A est diagonalisable,

on a ∆ = S−1AS ⇔ S∆ = AS en multipliant les deux membres à gauche par S.

• Matrice B : 2 valeurs propres, l’une simple 1 et l’autre double −1.

Les vecteurs propres relatifs à la valeur propre double −1 sont du type c

 0
0
1

 , c ∈ C0. Comme

cette valeur propre n’engendre pas 2 vecteurs propres linéairement indépendants, la matrice n’est
pas diagonalisable.

Les vecteurs propres relatifs à la valeur propre simple 1 sont du type c′

 0
1
0

 , c′ ∈ C0.

• Matrice C : 2 valeurs propres, l’une simple 1 et l’autre double −1.

Les vecteurs propres relatifs à la valeur propre double−1 sont du type c1

 −2
1
0

+c2

 0
0
1

 , c1, c2 ∈

C non simultanément nuls. Cette matrice est donc diagonalisable car elle possède 3 vecteurs propres
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linéairement indépendants.

Les vecteurs propres relatifs à la valeur propre simple 1 sont du type c

 0
1
0

 , c ∈ C0.

On a, par exemple, ∆ = S−1CS =

 −1 0 0
0 −1 0
0 0 1

 avec S =

 −2 0 0
1 0 1
0 1 0

.

• Matrice D : 3 valeurs propres simple : −4, 1 et 3 ; la matrice est donc diagonalisable.

Les vecteurs propres relatifs à la valeur propre −4 sont du type c

 −3
5
1

 , c ∈ C0 ; les vecteurs

propres relatifs à la valeur propre 1 sont du type c2

 1
0
3

 , c2 ∈ C0 et les vecteurs propres relatifs

à la valeur propre 3 sont du type c3

 3
2
−1

 , c3 ∈ C0.

On a, par exemple, ∆ =

 −4 0 0
0 1 0
0 0 3

 avec S =

 −3 1 3
5 0 2
1 3 −1

.

3. Une matrice carrée A de dimension 2 possède les deux valeurs propres 1 et -1, aux-

quelles peuvent être associés respectivement les vecteurs propres

(
2
2

)
et

(
1
−1

)
.

Que vaut A ?

La matrice A est égale à

(
0 1
1 0

)

II. Divers

1. L’institut météorologique a fait les observations suivantes :
— on n’a jamais vu deux jours ensoleillés consécutifs,
— s’il fait beau un jour donné, on a une chance égale d’avoir de la pluie ou de la neige

le lendemain,
— s’il pleut ou s’il neige, on a une chance sur deux que le temps se maintienne le jour

suivant et une chance sur quatre qu’il fasse beau le lendemain.
Sachant cela,

(a) Représenter la matrice de transition de ce système.

(b) Sachant qu’il fait beau aujourd’hui, quel pourcentage de chance a-t-on qu’il fasse
beau dans deux jours ?

(c) A long terme, quelle sera l’évolution du climat ?

(a) Si on note N0, P0 et S0 respectivement un jour de neige, un jour de pluie et un jour de soleil
au départ et N1, P1 et S1 la météo correspondante le jour suivant, on a N1

P1

S1

 =

 1/2 1/4 1/2

1/4 1/2 1/2

1/4 1/4 0


 N0

P0

S0


et la matrice de dimension 3 est la matrice de transition du système.
(b) Sachant qu’il fait beau aujourd’hui, on a 25 % de chance qu’il fasse beau dans 2 jours.
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(c) Le vecteur de probabilité de valeur propre 1 est égal à

 0, 4
0, 4
0, 2

. A long terme, on a 4 chances

sur 10 qu’il neige, 4 chances sur 10 qu’il pleuve et 2 chances sur 10 qu’il fasse ensoleillé.

2. Dans un laboratoire, à chaque repas, des lapins ont le choix entre manger des carottes,
de la salade ou des pissenlits mais ne peuvent manger qu’un aliment d’une seule
catégorie lors d’un même repas. Comme ils sont gourmands, ils ne manquent jamais
un repas.
L’observation montre que si un lapin a mangé des carottes à un repas, il en mangera
au repas suivant dans 70 % des cas ; sinon, il mangera de la salade une fois sur 5 ou
des pissenlits 1 fois sur 10.
S’il a mangé de la salade, il en mangera encore 6 fois sur 10 au repas suivant ; sinon,
il mangera un des deux autres aliments de façon équiprobable.
Enfin, s’il a mangé des pissenlits, au repas suivant il y a 1 chance sur 5 qu’il mange
des carottes et 2 chances sur 5 de la salade.

(a) Si un lapin vient de manger des carottes, quelle est la probabilité qu’il mange de
la salade dans deux repas ?

(b) A longue échéance, que mange ce lapin ?

(a) S’il vient de manger des carottes, le lapin a 30 % de chance de manger de la salade dans deux
repas.
(b) A longue échéance, le lapin a 40 % de chance de manger des carottes ou de la salade et 20%
de chance de manger des pissenlits.

3. En algèbre linéaire (ou géométrie analytique), une rotation du plan (d’angle θ) est
représentée par une matrice du type

Mθ =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
où θ est un réel (et représente la mesure de l’angle de la rotation).
— Pour tout θ, déterminer la matrice produit M2

θ et en simplifier les éléments au
maximum.
On a

M2
θ =

(
cos(2θ) − sin(2θ)
sin(2θ) cos(2θ)

)
— Montrer que quels que soient θ, θ′, les matrices Mθ et Mθ′ commutent. Qu’est-ce

que cela signifie en termes de rotations ?
On a

MθMθ′ = Mθ′Mθ =

(
cos(θ + θ′) − sin(θ + θ′)
sin(θ + θ′) cos(θ + θ′)

)
ce qui signifie que l’ordre dans lequel on effectue les rotations n’a pas d’importance.

— Montrer que quel que soit le réel θ, la matrice(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
est aussi une matrice qui représente une rotation.

On a (
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
=

(
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

)
.
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C’est donc aussi une matrice de rotation mais la rotation s’effectue dans le sens inverse de la
rotation d’angle θ.

4. Vrai ou faux (Justifier)

(a) Toute matrice carrée de dimension 3 commute avec

 1 0 0
0 1 0
0 0 0

.

Faux : si on multiplie la matrice donnée notée A à gauche et à droite par une matrice quel-

conque notée B du type

 a b c
d e f
g h i

 dont les élements sont des complexes quelconques, on

a, par exemple, que la troisième ligne de AB est le vecteur nul alors que la troisième ligne de
BA a pour premier élément g.

(b) La matrice

(
a− b a2 − ab+ b2

a2 − b2 a3 − b3
)

(a, b ∈ C) est inversible.

Faux car le déterminant de cette matrice vaut 0 si a = b ou si b = 0.

(c) Si une matrice carrée A de dimension 2 est de déterminant nul, alors l’une des
colonnes de A est multiple de l’autre.
Vrai (cf. théorie)

(d) Si deux lignes d’une matrice carrée A de dimension 3 sont identiques, alors detA =
0.
Vrai (cf. théorie)

(e) Si A est une matrice carrée de dimension 3, alors det(5A) = 5 detA.
Faux : det(5A) = 53 detA = 125 detA

(f) Si B est la matrice obtenue en multipliant la ligne 3 d’une matrice carrée A de
dimension 3 par 5, alors detB = 5 detA.
Vrai (cf. théorie)



80 CHAPITRE 5. CORRECTION DES EXERCICES 2025-2026 (MATH1009)

Liste 4 : fonctions de plusieurs variables (1)

I. Définitions et représentations graphiques

1. Déterminer le domaine de définition des fonctions données explicitement ci-dessous
et le représenter.

f(x, y) = ln

(
y2

4
− x2 + 1

)
, g(x, y) =

√
2x− y, h(x, y) = arcos(xy).

Les domaines de définition sont les suivants :
• dom(f) = {(x, y) ∈ R2 : y2/4− x2 + 1 > 0} ; sa représentation graphique est la région hachurée,
les points de l’hyperbole étant exclus de l’ensemble.
• dom(g) = {(x, y) ∈ R2 : 2x − y > 0} ; sa représentation graphique est la région hachurée, les
points des droites sont compris dans l’ensemble.
• dom(h) = {(x, y) ∈ R2 : −1 ≤ xy ≤ 1} ; sa représentation graphique est la région hachurée, les
points des hyperboles sont compris dans l’ensemble.
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2. Dans chacun des cas suivants, représenter les courbes de niveau d’équation f(x, y) = c
si
a) f(x, y) = 4x− y et c = −2, 4
b) f(x, y) = x2 − y2 et c = −1, 0, 1
c) f(x, y) = x2 − y et c = −2, 1

-
X

6
Y

−4

1

−1 1

4x− y = −2

4x− y = 4

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-
X

6
Y

x2 − y2 = 1

x2 − y2 = −1

x2 − y2 = 0

�
�	

@
@@R

-2 -1 1 2

2

4

6

-X

6
Y

y = x2 − 1

y = x2 + 2



81

3. On se place dans l’espace muni d’un repère orthonormé ; on appelle X,Y, Z les trois
axes de celui-ci.
a) Quelle est la nature de la surface quadrique déquation cartésienne x2 +y2−4z2 = 1 ?
b) Représenter la trace de la surface d’équation cartésienne x2 + y2 − 4z2 = 1 dans le
plan d’équation z = 0 puis dans celui d’équation x = 0. Comment appelle-t-on chacune
de ces courbes ?
a) Cette quadrique est un hyperbolöıde à une nappe.
b) La trace dans le plan d’équation z = 0 est le cercle centré à l’origine du repère et de rayon
1 ; celle dans le plan d’équation x = 0 est une hyperbole d’équation cartésienne y2 − 4z2 = 1 (cf.
graphique).
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4. Esquisser les représentations graphiques des surfaces quadriques dont les équations
cartésiennes sont

a)
x2

4
+ y2 +

z2

9
= 1 b)x2 + y2 = 4.
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II. Dérivation et gradient

1. En appliquant la définition des dérivées, montrer que la fonction f donnée explicite-
ment par f(x, y) = 3x2 +xy, (x, y) ∈ R2 est dérivable par rapport à sa première variable
au point (−1, 2) et donner la valeur de cette dérivée partielle en ce point.
La fonction f est dérivable par rapport à sa première variable au point (−1, 2) et sa dérivée partielle
en ce point vaut −4.

2. On donne les fonctions f , g et h par

f(x, y) = ln(x2 − 4 + y), g(x, y) = cos(x2y2 + 4y) et h(x, y) = x2 e−x/y.

a) Déterminer leur domaine de définition, de dérivabilité et les représenter dans un
repère orthonormé.
b) Déterminer les dérivées partielles de ces fonctions.
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Pour la fonction f , les 2 domaines sont égaux
à {(x, y) ∈ R2 : x2 + y − 4 > 0}.
La représentation graphique de cet ensemble
est la région hachurée, les points de la para-
bole étant exclus de l’ensemble. Les dérivées
partielles sont données par

Dxf(x, y) =
2x

x2 + y − 4

et

Dyf(x, y) =
1

x2 + y − 4
.

Pour la fonction g, les 2 domaines sont égaux à R2 : ce sont tous les points du plan.
Les dérivées partielles sont données par

Dxg(x, y) = −2xy2 sin(x2y2 + 4y) et Dyg(x, y) = −(2x2y + 4) sin(x2y2 + 4y).

Pour la fonction h, les 2 domaines sont égaux à R2 \ {(x, y) : y = 0} = R × R0 : ce sont tous les
points du plan sauf ceux de l’axe des abscisses. Les dérivées partielles sont données par

Dxh(x, y) =

(
2x− x2

y

)
e−x/y et Dyh(x, y) =

x3

y2
e−x/y.

3. On donne la fonction f par f(x, y) = ln(
√
x2 + 4y2).

a) Déterminer son domaine de définition et d’infinie dérivabilité.
b) Dans le domaine d’infinie dérivabilité, calculer D2

xf +D2
yf .

Les 2 domaines sont égaux à R2\{(0, 0)} et on a D2
xf(x, y) +D2

yf(x, y) = 3(x2 − 4y2)/(x2 + 4y2)2.

4. a) Déterminer le gradient de la fonction f donnée par f(x1, x2, x3) = x2
1 x2 sin(3x3).

b) Même question pour la fonction g donnée par g(x, y, z) = x2exy
2√z.

a) La fonction f est dérivable sur R3 et son gradient est le vecteur de composantes

(2x1x2 sin(3x3), x2
1 sin(3x3), 3x2

1x2 cos(3x3)).

b) La fonction g est dérivable sur {(x, y, z) ∈ R3 : z > 0} et son gradient est le vecteur de
composantes (

(2x+ x2y2
√
z)exy

2√z, 2x3y
√
z exy

2√z,
x3y2

2
√
z
exy

2√z
)
.

5. On donne les fonctions f et g respectivement par

f(x, y) = arcsin (y/x) g(x, y) = exp(
√
x+ y2 + 1).

a) Déterminer le domaine de définition A et d’infinie dérivabilité B de ces fonctions.
Représenter ces domaines.
b) Déterminer l’expression explicite de |x|Dxf(x, y) + |y|Dyf(x, y).
c) Déterminer l’expression explicite de F (t) = f (1/t, t), le domaine de dérivabilité de
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cette fonction et l’expression explicite de sa dérivée.
d) Déterminer l’expression explicite de G(t) = g(sin2(t), cos(t)), le domaine de dérivabilité
de cette fonction et l’expression explicite de sa dérivée.

a) Pour f , on a A = {(x, y) ∈ R2 : −1 ≤ y/x ≤ 1, x 6= 0} et
B = {(x, y) ∈ R2 : −1 < y/x < 1, x 6= 0}.

Pour g, on a A = {(x, y) ∈ R2 : x+ y2 + 1 ≥ 0} et B = {(x, y) ∈ R2 : x+ y2 + 1 > 0}.
Voici les représentations graphiques de ces ensembles (parties hachurées) :
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Les points des droites sont compris dans
A, sauf l’origine du repère.
Les points des droites sont exclus de B.
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Les points de la parabole sont compris

dans l’ensemble A mais non dans B.

b) On a

|x|Dxf(x, y) + |y|Dyf(x, y) =

{
0 si xy ≥ 0

−2y/
√
x2 − y2 si xy < 0

c) L’expression explicite de F (t) = f (1/t, t) est donnée par F (t) = arcsin(t2) ; si on considère
F sans faire référence à la composition, son domaine de dérivabilité est ] − 1, 1[ mais si on tient
compte de la composition alors on doit retirer 0 du domaine de dérivabilité. La dérivée de F est

DF (t) =
2t√

1− t4
.

d) L’expression explicite de G(t) = g(sin2(t), cos(t)) est donnée par G(t) = exp(
√

2) ; son domaine
de dérivabilité est R et sa dérivée est DG(t) = 0.

6. On donne la fonction f(x, y) =
√
x2 + y2.

a) Déterminer son domaine de définition A et celui d’infinie dérivabilité B.
b) Si on définit F par F (x, y) = f(x, y)(D2

xf(x, y) +D2
yf(x, y)), (x, y) ∈ B, montrer que F

est une fonction constante et déterminer cette constante.

On a A = R2 et B = R2 \ {(0, 0)} et F est la fonction constante 1.

7. On considère la fonction fr(x, y) = xre−y/x, r étant un réel.
a) Déterminer son domaine de définition A et celui d’infinie dérivabilité B.
b) Déterminer le réel r tel que Dxfr(x, y) = yD2

yfr(x, y) +Dyfr(x, y), (x, y) ∈ B.

On a A = B = {(x, y) ∈ R2 : x > 0} et le réel r vérifiant l’égalité donnée vaut −1.
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8. On donne la fonction f(x, y) = sin(ax) cos(by) où a et b sont des constantes réelles non
nulles. Montrer que f vérifie l’équation des ondes D2

xf − (a2/b2)D2
yf = 0.

La fonction f est infiniment dérivable sur R2 et vérifie bien l’équation des ondes.

9. L’expérience montre que, dans un champ de température, la chaleur s’écoule dans la
direction et le sens dans lesquels la température décrôıt le plus vite. Trouver cette
direction et ce sens en tout point du champ puis en un point P donné dans les cas
suivants :
a) T (x, y) = x2 − y2 et P a pour coordonnées (2, 1)
b) T (x, y) = arctan (y/x) et P a pour coordonnées (2, 2)
Esquisser l’isotherme correspondant à la valeur 3 dans le premier cas et à π/4 dans le
second ainsi que les vecteurs qui correspondent à la direction et au sens obtenus au
point P .

En toute généralité, le gradient de T est un vecteur qui pointe dans la direction et le sens dans
lesquels T crôıt le plus vite. Puisque la chaleur s’écoule dans la direction et le sens dans lesquels
la température décrôıt le plus vite, on considère l’opposé du vecteur gradient de T c’est-à-dire le
vecteur de composantes

a) (−2x, 2y) b)

(
y

x2 + y2
,
−x

x2 + y2

)
.

Au point P , on a respectivement les vecteurs de composantes (−4, 2) et ( 1
4 ,−

1
4 ).

-4 -2 2 4 6

-4

-2

2

4

-
X

6
Y

x2 − y2 = 3

Y

P

-
X

6
Y

1 2

1

2

y = x

R
P

10. On donne la fonction f explicitement par

f(x, y) = arcos(1− 2xy).

(a) Déterminer le domaine d’infinie dérivabilité de cette fonction.
(b) Dans un repère orthonormé, représenter ce domaine en le hachurant.
(c) Calculer l’expression suivante en tout point de ce domaine et la simplifier au
maximum.

xDxf(x, y)− yDyf(x, y)
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(a) Le domaine d’infinie dérivabilité de f est
A = {(x, y) ∈ R2 : 0 < xy < 1}.
(b) La représentation de A est la partie hachurée
du plan, les points des axes et de l’hyperbole étant
exclus.
(c) xDxf(x, y)− yDyf(x, y) = 0.

−2 −1 1 2 3

−1

1

2

3

X

Y

y = 1/x

0

11. On donne la fonction f explicitement par

f(x, y) = ln (x2 − y2)− ln (y).

(a) Déterminer le domaine d’infinie dérivabilité de cette fonction.
(b) Dans un repère orthonormé, représenter ce domaine en le hachurant.
(c) Calculer l’expression suivante en tout point de ce domaine et la simplifier au
maximum.

xDxf(x, y) + yDyf(x, y)

(a) Le domaine d’infinie dérivabilité de f est
A = {(x, y) ∈ R2 : x2 − y2 > 0, y > 0}.
(b) La représentation de A est la partie hachurée
du plan, les points des droites et de l’axe des abs-
cisses étant exclus.
(c) xDxf(x, y) + yDyf(x, y) = 1.

−2 −1 1 2 3

−1

1

2

3

X

Y

y = xy = −x

0
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Liste 5 : fonctions de plusieurs variables (2)

I. Dérivation des fonctions composées

1. a) On donne f , continûment dérivable sur ]− 2, 4[×]− 5, 5[. On demande le domaine de
dérivabilité de la fonction F définie par F (x, y) = f(x + 2y, 2x − 5y), sa représentation
graphique ainsi que l’expression des dérivées partielles de F en fonction de celles de f .

-

X

6
Y

−3 1 3

1

y = 2x
5 + 1

y = 2x
5 − 1y = −x2 − 1

y = −x2 + 2

Le domaine de dérivabilité de F est l’ensemble
{(x, y) ∈ R2 : −2 < x+ 2y < 4, −5 < 2x− 5y < 5}. Sa
représentation graphique est la partie du plan hachurée,
les points des droites étant exclus de l’ensemble.

Les dérivées partielles sont

(DxF )(x, y) = (D1f)(x+ 2y, 2x− 5y).1 + (D2f)(x+ 2y, 2x− 5y).2

(DyF )(x, y) = (D1f)(x+ 2y, 2x− 5y).2 + (D2f)(x+ 2y, 2x− 5y).(−5).

b) Même question pour g, fonction continûment dérivable sur ]0, 1[×] ln (π/3) ,+∞[ et
G(x, y) = g(exp(x), ln(arcos(y))).

-

X

6
Y

1

−1

1
y = 1/2

y = −1
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Le domaine de dérivabilité de G est l’ensemble
{(x, y) ∈ R2 : x < 0, y ∈ ] − 1, 1/2[}. Sa représentation
graphique est la partie du plan hachurée, les points des
bords étant exclus de l’ensemble.

Les dérivées partielles sont

(DxG)(x, y) = (D1g)(exp(x), ln(arcos(y))). exp(x)

(DyG)(x, y) = (D2g)(exp(x), ln(arcos(y))).

(
−1

arcos(y)
√

1− y2

)
.

2. On donne la fonction g continûment dérivable sur ]− π/2, π/6[×]0,+∞[×]0, 10/9[.

a) Déterminer le domaine de dérivabilité de f : t 7→ f(t) = g(arcsin(2t), 1/
√
t+ 1, t2 + 1).

b) Calculer la dérivée de f en fonction des dérivées partielles de g.
c) Si elle est définie, que vaut cette dérivée en 0 ? 1/3 ?
d) Mêmes questions si g est continûment dérivable sur ]− π/6, π/3[×]

√
2,+∞[×]0, 3[.
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a) Le domaine de dérivabilité de f est A = ]− 1/3, 1/4[.
b) La dérivée de f est donnée par

Df(t) = (D1g)

(
arcsin(2t),

1√
t+ 1

, t2 + 1

)
.

2√
1− 4t2

+(D2g)

(
arcsin(2t),

1√
t+ 1

, t2 + 1

)
.

−1

2
√

(t+ 1)3

+(D3g)

(
arcsin(2t),

1√
t+ 1

, t2 + 1

)
.2t.

c) La dérivée de f en 0 est donnée par (Df)(0) = (D1g)(0, 1, 1).2+(D2g)(0, 1, 1).(−1/2) ; elle n’est
pas dérivable en 1/3.
d) Le domaine de dérivabilité de f est vide : f n’est jamais dérivable.

3. Soit F (t) = f(x(t), y(t)) avec x(3) = 2, y(3) = 7, (Dx)(3) = 5, (Dy)(3) = −4, (D1f)(2, 7) = 6
et (D2f)(2, 7) = −8. En supposant satisfaites les hypothèses du théorème de dérivation
des fonctions composées en 3, que vaut (DF )(3) ?

On a (DF )(3) = (D1f)(2, 7).(Dtx)(3) + (D2f)(2, 7).(Dty)(3) = 62.

4. Soit F (s, t) = f(u(s, t), v(s, t)). En supposant satisfaites les hypothèses du théorème de
dérivation des fonctions composées en (1, 0) si

u(1, 0) = 2 (Dsu)(1, 0) = −2 (Dtu)(1, 0) = 6

v(1, 0) = 3 (Dsv)(1, 0) = 5 (Dtv)(1, 0) = 4

et (D1f)(2, 3) = −1 et (D2f)(2, 3) = 10, calculer (DsF )(1, 0) et (DtF )(1, 0).

On a (DsF )(1, 0) = (D1f)(2, 3).(Dsu)(1, 0) + (D2f)(2, 3).(Dsv)(1, 0) = 52 et
(DtF )(1, 0) = (D1f)(2, 3).(Dtu)(1, 0) + (D2f)(2, 3).(Dtv)(1, 0) = 34

5. (a) Soient

f ∈ C1(]0, 1[×]−∞, 0[) et F (t) = f

(
ln

(
t− 1

2

)
, t2 + t− 6

)
.

Où la fonction F est-elle dérivable ?
Quelle est l’expression de sa dérivée en fonction des dérivées partielles de f ?
(b) Même question pour

f ∈ C1(]0,+∞[×]0,+∞[) et F (x) = f(e−x − 1, ln(5− x2)).

(a) Le domaine de dérivabilité de F est vide.
(b) La fonction F est dérivable sur ]− 2, 0[ et l’expression de sa dérivée est donnée par

DF (x) = (D1f)(u, v)× (−e−x) + (D2f)(u, v)× −2x

5− x2

avec (u, v) = (e−x − 1, ln(5− x2)).

6. On donne la fonction (x, y) 7→ f(x, y) définie et 2 fois continûment dérivable sur
R2 \ {(0, 0)}. On effectue le changement de variables en coordonnées polaires x =
r cos(θ), y = r sin(θ) (r > 0 et θ ∈ [0, 2π[) et on considère F (r, θ) = f(r cos(θ), r sin(θ)).
Montrer que (Dxf)2 + (Dyf)2 = (DrF )2 + (DθF )2/r2

Remarque : le premier membre est pris au point de coordonnées (r cos(θ), r sin(θ)) et le second en
(r, θ).
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II. Représentation d’ensembles

1. Dans un repère orthonormé du plan, représenter, en le hachurant, l’ensemble dont
une description analytique est la suivante

a) A = {(x, y) ∈ R2 : 0 ≤ y ≤ inf{x,
√

1− x2}}
b) B = {(x, y) ∈ R2 : x ≥ 0, 0 ≤ y ≤ x2}
c) C = {(x, y) ∈ R2 : x ≥ y, y ∈ [0, 1]}

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.5

1.0

1.5

-
X

6
Y y = x

x2 + y2 = 1

A

-2 -1 1 2

1

2

3

4

-
X

6Y
y = x2

B -
X

6
Y

1

1

�
�
�
�
�
�
�
�

y = x

y = 1C

Les points des bords sont compris dans les ensembles.

2. Décrire analytiquement les ensembles hachurés suivants, les points des bords étant
compris dans l’ensemble, en donnant d’abord
a) l’ensemble de variation des abscisses
b) l’ensemble de variation des ordonnées.

-
X

6
Y

−4 1

−3

1A

-
X

6
Y

−1 1

1

2
B

-1 1 2 3 4 5 6

-3

-2

-1

1

2

3

-
X

6
Y

C

Les descriptions analytiques sont les suivantes
A = {(x, y) ∈ R2 : x ∈ [−4, 0], y ∈ [− 3

4x− 3, x4 + 1]}
= {(x, y) ∈ R2 : y ∈ [−3, 0], x ∈ [− 4

3y − 4, 0]} ∪ {(x, y) ∈ R2 : y ∈ [0, 1], x ∈ [4(y − 1), 0]}

B = {(x, y) ∈ R2 : y ∈ [0,+∞[, x ∈ [−y, y
2}

= {(x, y) ∈ R2 : x ∈ ]−∞, 0], y ∈ [−x,+∞[} ∪ {(x, y) ∈ R2 : x ∈ [0, +∞[, y ∈ [2x, +∞[}

C = {(x, y) ∈ R2 : y ∈ [−1, 2], x ∈ [y2, y + 2]}
= {(x, y) ∈ R2 : x ∈ [0, 1], y ∈ [−

√
x,
√
x]} ∪ {(x, y) ∈ R2 : x ∈ [1, 4], y ∈ [x− 2,

√
x]}.
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3. Dans un repère orthonormé, représenter graphiquement les ensembles A et B si

A = {(x, y) ∈ R2 : x ≥ 0, x−2 ≤ y ≤ 2, x2+y2 ≥ 4} B = {(x, y) ∈ R2 : x ≥ 1, 1/x ≤ y ≤
√
x}.

Pour chacun de ces 2 ensembles,
a) déterminer leur ensemble X (respectivement Y ) de variation des abscisses (resp.
des ordonnées)
b) à abscisse (resp. ordonnée) fixée dans X (resp. Y ) donner l’ensemble de variation
des ordonnées (resp. des abscisses) de leurs points
c) donner 2 descriptions analytiques en se servant des 2 items précédents.

-2 2 4

-4

-2

2

4

0 1 2 3 4

0.5

1.0

1.5

2.0

2.5

3.0

A

-
X

6
Y

y = 2

y = x− 2

x2 + y2 = 4

B

-
X

6
Y

y =
√
x

y = 1
x

x = 1

Les points des bords sont compris dans A et dans B.

Pour A :
a) X = [0, 4] et Y = [0, 2].
b) si x fixé dans [0, 2] alors les ordonnées varient dans [

√
4− x2, 2]

si x fixé dans [2, 4] alors les ordonnées varient dans [x− 2, 2].

si y fixé dans Y alors les abscisses varient dans [
√

4− y2, y + 2].
c) on a
A = {(x, y) ∈ R2 : x ∈ [0, 2], y ∈ [

√
4− x2, 2]} ∪ {(x, y) ∈ R2 : x ∈ [2, 4], y ∈ [x− 2, 2]}

= {(x, y) ∈ R2 : y ∈ [0, 2], x ∈ [
√

4− y2, y + 2].

Pour B :
a) X = [1,+∞[ et Y =]0,+∞[.
b) si x fixé dans X alors les ordonnées varient dans [1/x,

√
x].

si y fixé dans ]0, 1] alors les abscisses varient dans 1/y,+∞[
si y fixé dans [1,+∞[ alors les abscisses varient dans [y2,+∞[.

c) on a
B = {(x, y) ∈ R2 : x ∈ [1,+∞[, y ∈ [1/x,

√
x]}

= {(x, y) ∈ R2 : y ∈]0, 1], x ∈ [1/y,+∞[} ∪ {(x, y) ∈ R2 : y ∈ [1,+∞[, x ∈ [y2,+∞[}.

4. Décrire analytiquement l’ensemble borné fermé hachuré suivant en commençant par
l’ensemble de variation des ordonnées puis, à ordonnée fixée, l’ensemble de variation
des abscisses.
Faire de même en commençant par l’ensemble de variation des abscisses.
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a)

b)

c)

a) Les points A, B, C et D ont respectivement pour coordonnées (−2, 0), (0, 1), (0,−1) et (2, 0).
Les droites qui délimitent l’ensemble ont pour équation AB ≡ x−2y+2 = 0, AC ≡ x+2y+2 = 0,

et l’ellipse a pour équation x2

4 + y2 = 1 ou encore x2 + 4y2 = 4.
Dès lors, l’ensemble fermé hachuré est décrit analytiquement par{

(x, y) ∈ R2 : y ∈ [−1, 0], x ∈
[
−2y − 2, 2

√
1− y2

]}
∪
{

(x, y) ∈ R2 : y ∈ [0, 1], x ∈
[
2y − 2, 2

√
1− y2

]}
ou encore par{

(x, y) ∈ R2 : x ∈ [−2, 0], y ∈ [(−x− 2)/2, (x+ 2)/2]
}

∪
{

(x, y) ∈ R2 : x ∈ [0, 2], y ∈
[
−
√

4− x2/2,
√

4− x2/2
]}
.

b) L’ellipse a pour équation x2 + y2/4 = 1 ou encore 4x2 + y2 = 4. la branche de la parabole qui
comprend le point de coordonnées (1, 2) a pour équation y = 2

√
x. Le point d’intersection entre

les deux courbes est le point de coordonnées ((−1 +
√

5)/2,
√
−2 + 2

√
5).

Dès lors, l’ensemble fermé hachuré est décrit analytiquement par{
(x, y) ∈ R2 : y ∈

[
0,

√
−2 + 2

√
5

]
, x ∈

[
y2

4
,

√
4− y2

2

]}

ou encore par{
(x, y) ∈ R2 : x ∈

[
0, (−1 +

√
5)/2

]
, y ∈ [0, 2

√
x]
}

∪
{

(x, y) ∈ R2 : x ∈
[
(−1 +

√
5)/2, 1

]
, y ∈

[
0, 2
√

1− x2
]}
.
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c) Les points A, B et C ont respectivement pour coordonnées (0, 1), (2, 0) et (8, 3) . Les droites qui
délimitent l’ensemble ont pour équation AB : x+ 2y − 2 = 0, BC : x− 2y − 2 = 0, et la parabole
a pour équation y2 − 1 = x .
Dès lors, l’ensemble fermé hachuré est décrit analytiquement par

{
(x, y) ∈ R2 : y ∈ [0, 1], x ∈ [−2y + 2, 2y + 2]

}
∪
{

(x, y) ∈ R2 : y ∈ [1, 3], x ∈
[
y2 − 1, 2y + 2

]}
ou encore par{

(x, y) ∈ R2 : x ∈ [0, 2], y ∈
[
−x
2

+ 1,
√
x+ 1

]}
∪
{

(x, y) ∈ R2 : x ∈ [2, 8], y ∈
[x

2
− 1,
√
x+ 1

]}
.

5. On donne l’ensemble B suivant. Représenter graphiquement celui-ci en le hachurant.

B = {(x, y) ∈ R2 : x ∈ [0, 2π], sin(2x) ≤ y ≤ sin(x)}.

1 2 3 4 5 6 7
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X

6
Y

y = sin(2x)

y = sin(x)

Les points des � bords � sont compris dans l’ensemble.

6. En utilisant les coordonnées polaires, décrire analytiquement les ensembles hachurés
suivants, les points des bords étant compris dans A mais non dans B.
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B

Les ensembles A et B exprimés en coordonnées polaires sont respectivement

A′ =

{
(r, θ) : r ∈ [1, 3], θ ∈

[
3π

4
, π

]}
et B′ =

{
(r, θ) : r ∈]0, 2[, θ ∈

]
π,

7π

6

[}
.
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7. Dans un repère orthonormé du plan, représenter, en le hachurant, l’ensemble dont
une description analytique est

E = {(x, y) ∈ R2 : −1 < x < 0, y > 0, x2 + y2 > 1}.

Ensuite, décrire analytiquement cet ensemble en utilisant les coordonnées polaires.

Les points des bords sont exclus de l’ensemble.
L’ensemble E exprimé en coordonnées polaires est

E′ =

{
(r, θ) : θ ∈

]π
2
, π
[
, r ∈

]
1,
−1

cos(θ)

[}
.
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Liste 6 : révisions en vue de l’interrogation
du 31 mars 2026

Liste à établir en fonction de la matière prévue pour l’interrogation

Liste 7 : révisions en vue de l’interrogation
du 31 mars 2026

Liste à établir en fonction de la matière prévue pour l’interrogation
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Liste 8 : fonctions de plusieurs variables (3)

I. Permutation de l’ordre d’intégration

1. Supposons que la fonction f est intégrable sur l’ensemble considéré. Permuter les
intégrales et représenter l’ensemble d’intégration dans les cas suivants

a)

∫ 1

−1

(∫ 2−y

y−2

f(x, y) dx

)
dy b)

∫ 3

0

(∫ √18−y2

y

f(x, y) dx

)
dy.

a) Si on permute l’ordre d’intégration, l’intégrale s’écrit∫ −1

−3

(∫ x+2

−1

f(x, y) dy

)
dx+

∫ 1

−1

(∫ 1

−1

f(x, y) dy

)
dx+

∫ 3

1

(∫ −x+2

−1

f(x, y) dy

)
dx

et l’ensemble d’intégration est la partie hachurée du plan ci-dessous.
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6
Y

−3 1 3
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1
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y = 1
y = x+ 2 y = −x+ 2

b) Si on permute l’ordre d’intégration, l’intégrale s’écrit∫ 3

0

(∫ x

0

f(x, y) dy

)
dx+

∫ 3
√

2

3

(∫ √18−x2

0

f(x, y) dy

)
dx

et l’ensemble d’intégration est la partie hachurée du plan ci-dessous.
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6
Y y = x

y = 3

x2 + y2 = 18

2. On considère une fonction f intégrable sur l’ensemble hachuré fermé borné A ci-
dessous. Ecrire, dans un ordre et dans l’autre, l’intégrale

∫∫
A

f(x, y)dx dy.
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6
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L’intégrale sur cet ensemble s’écrit∫ 3

1

(∫ x

0

f(x, y) dy

)
dx =

∫ 1

0

(∫ 3

1

f(x, y) dx

)
dy +

∫ 3

1

(∫ 3

y

f(x, y) dx

)
dy.

II. Intégration sur des ensembles fermés bornés

1. Dans le plan, on considère l’ensemble borné fermé A délimité par le graphique de la
droite d’équation cartésienne x+ y = 0 et celui de la fonction x 7→ −x2.
a) Représenter A dans un repère orthonormé et en donner une expression analytique.
b) Calculer, si elle existe, l’intégrale de f sur A si f : (x, y) 7→ f(x, y) = x cos(y).

-2 -1 1 2

-2.5

-2.0

-1.5

-1.0

-0.5

0.5

1.0

-
X

6Y

y = −x

y = −x2

L’expression analytique de A est
A = {(x, y) ∈ R2 : x ∈ [0, 1], y ∈ [−x,−x2]}
ou encore
A = {(x, y) ∈ R2 : y ∈ [−1, 0], x ∈ [−y,

√
−y]}.

La fonction f est intégrable sur A et son intégrale
vaut sin(1)− (cos(1) + 1)/2.

2. Si elle existe, calculer l’intégrale de
a) f(x, y) = 4 + x2 sur A = {(x, y) ∈ R2 : x ∈ [−2, 2], y ∈ [1 + x2, 9− x2]}
b) f(x, y) = cos(y2) sur A = {(x, y) ∈ R2 : x ∈ [−1, 0], y ∈ [−x, 1]}
c) f(x, y) = y2 cos(xy) sur A = [π/2, π]× [−1, 1]}

a) La fonction f est intégrable sur A et son intégrale vaut 512/5.

b) La fonction f est intégrable sur A et son intégrale vaut sin(1)/2.

c) La fonction f est intégrable sur A et son intégrale vaut (2π − 8)/π2.

3. Si elle existe, déterminer la valeur de l’intégrale sur l’ensemble A borné fermé hachuré
ci-dessous dans les cas suivants

a)
∫∫
A
ex−y dx dy

-
X

6Y

−2 1

1

b)
∫∫
A
xy dx dy

-
X

6Y

−1 1 2

1

c)

∫∫
A

y√
1 + x2

dx dy

1 2 3 4 5 6

0.5

1.0

1.5

2.0

2.5

-

X

6Y

x = 4

y =
√
x

a) La fonction f est intégrable sur A et son intégrale vaut (1/e− 1)
2
.

b) La fonction f est intégrable sur A et son intégrale vaut 3/8.
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c) La fonction f est intégrable sur A et son intégrale vaut (
√

17− 1)/2.

4. Soit I =

∫ 3
√
π

0

(∫ 3√
π2

y2
cos(
√
x3) dx

)
dy.

Représenter l’ensemble d’intégration et calculer l’intégrale si c’est possible.

0.5 1.0 1.5 2.0 2.5 3.0

-2

-1

1

2

-

X

6
Y

x = y2

y = 3
√
π

x =
3
√
π2

La fonction est intégrable sur cet ensemble
(partie hachurée) et son intégrale vaut 0.
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Liste 9 : correction de l’interrogation
du 31 mars 2026
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Liste 10 : fonctions de plusieurs variables (4)

I. Intégration sur des ensembles non fermés bornés

1. Si elles ont un sens, calculer les intégrales suivantes et représenter l’ensemble d’intégration.

a)

∫∫
A

1

x
dx dy avec A = {(x, y) ∈ R2 : x ≥ 1, 0 ≤ y ≤ 1/x}

La fonction est intégrable sur A
et son intégrale vaut 1. L’ensemble
d’intégration est l’ensemble hachuré
ci-contre.

0 1 2 3 4

0

1

2

3

4

X

Y

x = 1

xy = 1

b)

∫ 1

−∞

(∫ +∞

0

ey−3x dx

)
dy

La fonction est intégrable sur l’ensemble
{(x, y) ∈ R2 : x ∈ [0,+∞[, y ∈]−∞, 1]} et son
intégrale vaut e/3. L’ensemble d’intégration
est l’ensemble hachuré ci-contre.

-
X1

6
Y

1 y = 1

c)

∫∫
A

e−y
2

dx dy avec A = {(x, y) ∈ R2 : 0 ≤ x ≤ y}

La fonction est intégrable sur A et
son intégrale vaut 1/2. L’ensemble
d’intégration est l’ensemble hachuré
ci-contre. -

X1

6
Y

1

�
�
�
�
�
�
�
�y = x

d)

∫∫
A

x3 e−x
2y dx dy avec A = {(x, y) ∈ R2 : x > 0, 1 ≤ xy}

La fonction est intégrable sur A
et son intégrale vaut 1. L’ensemble
d’intégration est l’ensemble hachuré
ci-contre.

0 1 2 3 4

0

1

2

3

4

X

Y

xy = 1
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2. Déterminer si les intégrales suivantes existent ; si oui, les calculer. Représenter géométriquement
l’ensemble d’intégration dans chaque cas.

a)

∫ +∞

0

(∫ y2

0

ye−y
2

x+ y2
dx

)
dy, b)

∫ 1

0

(∫ +∞

x

√
x

x2 + y2
dy

)
dx, c)

∫ 1

0

(∫ x2

0

1

x+ y
dy

)
dx

a) La fonction est intégrable sur
{(x, y) ∈ R2 : y ∈]0,+∞[, x ∈ [0, y2]}
et son intégrale vaut ln(2)/2. L’ensemble
d’intégration est l’ensemble hachuré ci-contre.

0 1 2 3 4

0

1

2

3

X

Y

y =
√
x

b) La fonction est intégrable sur
{(x, y) ∈ R2 : x ∈]0, 1], y ∈ [x,+∞[} et son
intégrale vaut π/2. L’ensemble d’intégration
est l’ensemble hachuré ci-contre.

-
X1

6
Y

1

�
�
�
�
�
�
�
�y = x

x = 1

c) La fonction est intégrable sur
{(x, y) ∈ R2 : x ∈]0, 1], y ∈ [0, x2]}
et son intégrale vaut 2 ln(2) − 1. L’en-
semble d’intégration est l’ensemble
hachuré ci-contre.

0 1 2
0

1

2

3

X

Y
y = x2

x = 1

3. On considère l’intégrale double suivante

I =

∫ +∞

0

(∫ x

0

cos(y − x)e−x dy

)
dx

a) Permuter l’ordre d’intégration et représenter l’ensemble d’intégration dans un
repère orthonormé.
b) Si elle existe, déterminer la valeur de cette succession d’intégrales dans un ordre
et dans l’autre.
c) Trouve-t-on la même valeur quel que soit l’ordre d’intégration ? Pouvait-on le
prévoir sans calculer les 2 intégrales ?

a) L’ensemble d’intégration A est donné par

A = {(x, y) ∈ R2 : x ∈ [0,+∞[, y ∈ [0, x]} = {(x, y) ∈ R2 : y ∈ [0,+∞[, x ∈ [y,+∞[}
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et est représenté par l’ensemble hachuré ci-dessous.

En permutant l’ordre d’intégration, on a I ′ =

∫ +∞

0

(∫ +∞

y

cos(y − x)e−x dx

)
dy.

b) La fonction est intégrable sur A et, dans un ordre ou dans l’autre, son intégrale vaut 1/2.
c) On trouve la même valeur car la fonction est intégrable sur A.

-
X

6
Y

�
�
�
�
�
�
�
y = x

@
@

@
@
@

@
@
@
@

@
@

@
@
@

4. Calculer l’intégrale de f : (x, y) 7→ f(x, y) = x− y sur l’ensemble fermé hachuré suivant
(et donner une description analytique de cet ensemble)

0 1 2 3 4−1−2

0

1

2

3

4

−1

-

X

6
Yy = e−x

Une description analytique de l’ensemble d’intégration est donnée par

A = {(x, y) ∈ R2 : x ∈ [0,+∞[, y ∈ [0, e−x]}

= {(x, y) ∈ R2 : y ∈]0, 1], x ∈ [0,− ln(y)]} ∪ {(x, y) ∈ R2 : y = 0, x ≥ 0}

La fonction est intégrable sur A et son intégrale vaut 3/4.
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Liste 11 : fonctions de plusieurs variables (5)

I. Intégration par changement de variables polaires

1. Si elle existe, calculer

a)

∫∫
A

√
x2 + y2 dx dy où A est l’ensemble hachuré ci-dessous.

b)

∫∫
B

xy dx dy où B est l’ensemble hachuré ci-dessous.

c)

∫∫
C

(2x+ y) dx dy où C = {(x, y) ∈ R2 : 0 ≤ y ≤ inf{−x,
√

1− x2}}.

-2 -1 1 2

0.5

1.0

1.5

2.0

-
X

6
Yy = −x y = xA

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

-
X

6Yy = −x

�
�
��

�
�
�

�
��
�
�

B

Les 3 fonctions sont intégrables et les intégrales valent respectivement 4π/3, −5 et 1/3−
√

2/2.

2. Soit A une partie du plan (bornée et fermée). Le centre de masse de A (considéré
homogène) est défini comme le point de coordonnées (xA, yA) où

xA = s−1

∫∫
A

x dx dy, yA = s−1

∫∫
A

y dx dy

et où s est l’aire de la surface A.
Déterminer la position du centre de masse d’une plaque homogène dont la forme est
un tiers de cercle de rayon R (R réel strictement positif).

La position du centre de masse est donnée par le point de coordonnées

(
R
√

3

2π
,

3R

2π

)
dans un

repère orthonormé correspondant au graphique ci-dessous.

-

XR

6Y

R

II. Divers

La masse d’une plaque plane est donnée par

m =

∫∫
R

δ(x, y)dxdy,
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où δ(x, y) est la densité au point de coordonnées (x, y). Considérons une plaque plane de la
forme d’un triangle isocèle rectangle R dont les côtés égaux mesurent 4 m. Si la densité en
un point P est directement proportionnelle au carré de la distance de P au sommet opposé
à l’hypoténuse 1, si l’on place l’origine du repère sur ce sommet et si les axes OX et OY
sont les prolongations des côtés de même longueur du triangle R,

a) quelle est la masse de cette plaque ?
b) en quelles unités s’exprime la constante K ?

1 2 3 4 5
x

1

2

3

4

y

La masse de la plaque est 128K/3 kg et la constante K s’exprime en kg/m4.

1. c’est-à-dire δ(x, y) = K(x2 + y2) (où K est une constante)
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Liste 12 : approximations polynomiales

Approximations polynomiales

1. Dans chacun des cas suivants, déterminer l’approximation polynomiale à l’ordre n en
x0 pour la fonction fk. Représenter f2 ( —-ou f3 ou f5— ) et ses approximations. Pour
f5,
a) donner une expression explicite du reste de ces approximations.
b) indiquer où se situe le graphique de f5 au voisinage de 0 par rapport à celui de
chacune des approximations en tenant compte du point précédent.

f1(x) = cos(x) e3x, x0 = 0, n = 0, 1, 2, 3 f2(x) =
√

1 + 9x, x0 = 0, n = 0, 1, 2
f3(x) = 1/(1− 2x), x0 = 0, n = 0, 1, 2 f4(x) = arctan(x), x0 = 0 (resp. x0 = 1), n = 0, 1, 2
f5(x) = cos2(x), x0 = 0, n = 0, 1, 2 f6(x) = sin(x), x0 = 1, n = 0, 1, 2

Fonction Ordre 0 Ordre 1 Ordre 2

f1 1 1 + 3x 1 + 3x+ 4x2, x ∈ R

f2 1 1 +
9x

2
1 +

9x

2
− 81x2

8
, x ∈ R

f3 1 1 + 2x 1 + 2x+ 4x2, x ∈ R

f4(x0 = 0) 0 x x, x ∈ R

f4(x0 = 1)
π

4

π

4
+
x− 1

2

π

4
+
x− 1

2
− (x− 1)2

4
, x ∈ R

f5 1 1 1− x2, x ∈ R

f6 sin(1) sin(1) + cos(1)(x− 1) sin(1) + cos(1)(x− 1)− sin(1)
(x− 1)2

2
, x ∈ R

L’approximation à l’ordre 3 en 0 de f1 est donnée par P (x) = 1 + 3x+ 4x2 + 3x3, x ∈ R.

a) Pour f5, si on note Rn le reste de l’approximation polynomiale de f à l’ordre n en 0, alors pour
tout x ∈ R, il existe u0, u1, u2 compris entre 0 et x tels que

R0(x) = − sin(2u0)x, R1(x) = −2 cos(2u1).
x2

2!
= − cos(2u1)x2

et

R2(x) = 4 sin(2u2).
x3

3!
=

2 sin(2u2)x3

3
.

b) Lorsque x est au voisinage de 0, R0(x) et R1(x) sont négatifs tandis que R2(x) est positif. Dès
lors, le graphique de la fonction est situé en dessous de celui de P0 et de celui de P1 mais au-dessus
de celui de P2.

Dans les graphiques suivants, notons Pi l’approximation polynomiale à l’ordre i.
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-1 1 2 3

-1

1

2

3

-
X

6
Y f2

P0

P1

P2

-1.0 -0.5 0.5 1.0

-0.5

0.5

1.0

1.5

2.0

2.5

3.0

-
X

6Y

f3

P0

P1P2

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.0

-0.5

0.5

1.0

-
X

6

Y

f5

P0 = P1

P2

2. a) Déterminer l’approximation polynomiale à l’ordre 3 en 0 de la fonction cos et en
estimer le reste. Représenter la fonction et cette approximation dans le même repère
orthonormé.

L’approximation polynomiale à l’ordre 3 en 0 est donnée par P3(x) = 1− x2/2, x ∈ R et le reste
vaut R3(x) = cos(u)x4/4!, x ∈ R où u est un réel strictement compris entre 0 et x. Dès lors, on a
|R3(x)| ≤ x4/24.

-2 -1 1 2

-1.0

-0.5

0.5

1.0

-
X

6
Y

cosP3

b) Déterminer l’approximation polynomiale en 0 à l’ordre 1, 2 et 3 de la fonction f(x) =
x sin(x), x ∈ R. Représenter graphiquement ces approximations dans le même repère
orthonormé que celui où f est représenté (cf ci-dessous), en justifiant les positions
relatives des courbes.
(Suggestion : | sin(x)| ≤ |x| ∀x ∈ R)

-6 -4 -2 2 4 6
X

-5

-4

-3

-2

-1

1

2

3

Y

-

6 y = x sin(x)

Les approximations polynomiales en 0 à l’ordre 1, 2 et 3 de la fonction f sont respectivement
P1(x) = 0, P2(x) = x2 = P3(x), x ∈ R.
Au voisinage de zéro, le graphique de f est
1) au-dessus de celui de P1

2) en dessous de celui de P2 = P3
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-6 -4 -2 2 4 6

-4

-2

2

-
X

6
Y

f

P1

P2 = P3

3. Un professeur de mathématique lance un défi à ses élèves. Le premier qui donnera
une approximation du nombre e avec les 3 premières décimales exactes et pourra
expliquer sa méthode aux autres sera dispensé de la prochaine interrogation. Pour
relever le défi, les élèves, restés en classe, n’ont droit qu’à une feuille et un crayon.
Ils sont sans accès à internet et ne peuvent utiliser ni gsm, ni calculatrice ...

Comment peuvent-ils procéder ?

L’approximation polynomiale en 0 à l’ordre n (n ∈ N) de l’exponentielle est donnée par

Pn(x) = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+
x6

6!
+ . . .+

xn

n!
, x ∈ R

et le reste associé vaut Rn(x) = eu xn+1/(n+ 1)!, x ∈ R où u est un réel strictement compris entre
0 et x. Dès lors, si x ∈ [0, 1], eu ∈ [1, e] ⊂ [1, 3] et on a Rn(x) ≤ 3xn+1/(n+ 1)!.

Si x = 1, l’inégalité

3

(n+ 1)!
<

1

103
est vérifiée si n ≥ 6 (7! = 5040).

Dès lors, en prenant n = 6 et x = 1, une valeur approchée de e est donnée par

P (1) = 1 + 1 +
1

2!
+

1

3!
+

1

4!
+

1

5!
+

1

6!
= 2 +

1

2
+

1

6
+

1

24
+

1

120
+

1

720
= 2 +

517

720
= 2, 718 . . .

4. Déterminer l’approximation polynomiale à l’ordre 0, 1, 2, 3 en 0 des fonctions données
par 2

g1(x) = ln

(
1− x
x+ 1

)
, g2(x) =

−x+ 2

2x2 + x− 1
.

Pour g1, les approximations polynomiales à l’ordre 0, 1, 2, 3 en 0 sont respectivement

P0(x) = 0, P1(x) = −2x, P2(x) = −2x, P3(x) = −2x− 2x3

3
, x ∈ R.

Pour g2, les approximations polynomiales à l’ordre 0, 1, 2, 3 en 0 sont respectivement

P0(x) = −2, P1(x) = −2− x, P2(x) = −2− x− 5x2, P3(x) = −2− x− 5x2 − 7x3, x ∈ R.

2. Suggestion. Utiliser le développement de ln(1 + x) et ln(1 − x) pour g1 et décomposer en fractions simples pour g2.
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5. Un tunnel d’une longueur l relie deux points de la surface de la Terre. Si R désigne
le rayon de la Terre, déterminer une approximation de la profondeur maximale p de
ce tunnel.

R

6?
p

-�
l

Une approximation de la profondeur maximale de ce tunnel vaut
l2

8R
.
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Liste 13 : Développements en série de puissances

Développements en série de puissances

1. Si possible, développer les fonctions suivantes (données explicitement) en série de
puissances de x au voisinage de 0

f1(x) =
x− 1

x+ 1
, f2(x) =

−3x+ 2

2x2 − 3x+ 1
.

On a les développements suivants

f1(x) = 1− 2

+∞∑
m=0

(−1)mxm = −1− 2

+∞∑
m=1

(−1)mxm pour x ∈]− 1, 1[

et

f2(x) =

+∞∑
m=0

(1 + 2m)xm pour x ∈]− 1/2, 1/2[.

2. Déterminer le développement en série de puissances de x des fonctions suivantes

f1(x) = x3 exp(−x), x ∈ R f2(x) = ch(x) =
ex + e−x

2
, x ∈ R

f3(x) = sh(x) =
ex − e−x

2
, x ∈ R 3 f4(x) = cos(x), x ∈ R

f5(x) = sin(x), x ∈ R f6(x) = ln(1 + x), x ∈]− 1, 1[

f7(x) = ln

(
1 + x

1− x

)
, x ∈]− 1, 1[ f8(x) = arctan(x), x ∈ R

Fonction Développement en série de puissances

f1

+∞∑
m=0

(−1)m
xm+3

m!
, x ∈ R

f2

+∞∑
m=0

x2m

(2m)!
, x ∈ R

f3

+∞∑
m=0

x2m+1

(2m+ 1)!
, x ∈ R

f4

+∞∑
m=0

(−1)mx2m/(2m)!, x ∈ R

Fonction Développement en série de puissances

f5

+∞∑
m=0

(−1)mx2m+1/(2m+ 1)!, x ∈ R

f6

+∞∑
m=0

(−1)m
xm+1

m+ 1
, x ∈]− 1, 1[

f7 2

+∞∑
m=0

x2m+1

2m+ 1
, x ∈]− 1, 1[

f8

+∞∑
m=0

(−1)m
x2m+1

2m+ 1
, x ∈]− 1, 1]

3. Les fonctions ch et sh sont appelées respectivement cosinus et sinus hyperboliques
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Liste 14 : Mathématiques appliquées

Fonctions de plusieurs variables

1. En thermodynamique, il existe essentiellement 3 types d’équilibres macroscopiques :
l’équilibre thermique, l’équilibre mécanique et l’équilibre osmotique (mélange ho-
mogène 4). Dès lors, par définition, un équilibre thermodynamique est atteint lorsque
ces 3 équilibres sont réunis.
Selon le premier postulat de la thermodynamique, l’équilibre thermodynamique d’un
système physique se définit à l’aide de 3 paramètres : l’énergie interne U , le volume
V et le nombre de particules N du système.
Le second postulat stipule qu’il existe une fonction S, dépendant de U , V et N , qui
est maximale à l’équilibre thermodynamique. Cette fonction est appelée entropie du
système et la connâıtre, c’est connâıtre l’ensemble du système. Cette fonction permet
de plus de déterminer les équations d’état qui régissent le système : ces dernières font
intervenir les dérivées partielles de S et sont données par

DUS =

(
∂S

∂U

)
V,N

=
1

T
DV S =

(
∂S

∂V

)
U,N

=
p

T
DNS =

(
∂S

∂N

)
V,U

=
−µ
T

où
— T est la température du système ;
— p est la pression du système ;
— µ est le potentiel chimique du système (qui renseigne sur l’équilibre osmotique

d’un système 5) ;
et où les variables indicées sont considérées comme constantes.

Sachant que l’entropie du gaz de Van Der Waals (archétype des gaz réels), est donnée
par

S = kBN ln

(
V −Nv0

N

)
+

3kBN

2
ln

(
U +KiN

2/V

N

)
+

3kBN

2
ln

(
4πm

3}2

)
+

5

2
kBN

où
— kB est la constante de Boltzmann et vaut approximativement 1, 38.10−23J/K,
— v0 est le volume occupé par une particule et dans lequel les autres particules ne

peuvent pénétrer,
— Ki > 0 est le paramètre d’interaction entre les particules,
— m est la masse d’une particule,
— } est la constante de Planck et vaut 6, 626.10−34J.s,
déterminer les équations d’état d’un tel gaz lorsque le nombre de particules N est
constant et, à partir de la première équation d’état, exprimer l’énergie interne U en
fonction de V, N et T .

Solution. La première équation d’état conduit à

DUS =
3kBN

2(U +KiN2/V )
=

1

T

qui peut se réécrire sous la forme

U =
3

2
kBNT −

KiN
2

V
.

4. Par exemple, si on jette une goutte d’encre dans un verre d’eau, l’encre va “diffuser” dans le liquide et l’équilibre est
atteint lorsque l’encre est mélangée de façon homogène avec l’eau.

5. De manière générale, si deux substances de potentiels chimiques respectifs µ1, µ2 sont mises en présence l’une de
l’autre, l’équilibre thermodynamique est atteint lorsque µ1 = µ2.
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La seconde équation d’état conduit à

DV S =
kBN

V −Nv0
+

3kBN

2
× −KiN

2/V 2

U +KiN2/V
=
p

T

2. La pression P (en kPa), le volume V (en l) et la température T (en K) d’une mole
d’un gaz parfait sont liés par l’équation 6 :

PV = 8, 31T .

Sachant que, lors d’une mesure à l’instant t, la température d’un tel gaz, qui est de
300K, augmente à la vitesse de 0, 1K/s et que son volume, qui est de 100 l, augmente
à raison de 0, 2 l/s, déterminer la vitesse de variation de la pression de ce gaz.

Solution. La pression diminue à la vitesse de 0, 04155 kPa/s.

3. La recherche des extrema d’une fonction à une seule variable est relativement aisée :
il suffit de rechercher les valeurs en lesquelles la dérivée de cette fonction s’annule
et de voir s’il s’agit d’un minimum, d’un maximum ou d’un point d’inflexion. Cette
recherche s’avère plus délicate pour une fonction de plusieurs variables. Cependant,
pour une fonction de 2 variables, nous disposons du test suivant, appelé test des
dérivées partielles :

Soient A une partie de R2, (a, b) ∈ A et f : (x, y) 7→ f(x, y) une fonction
2 fois continûment dérivable sur A telle que

(Dxf)(a, b) = (Dyf)(a, b) = 0.

Posons

D = (D2
xf)(a, b)(D2

yf)(a, b)− [(DxDyf)(a, b)]
2
.

(a) Si D > 0 et si (D2
xf)(a, b) > 0 alors f(a, b) est un minimum local

de f ;

(b) Si D > 0 et si (D2
xf)(a, b) < 0 alors f(a, b) est un maximum local

de f ;

(c) Si D < 0 alors f(a, b) n’est ni un minimum local, ni un maximum
local de f ; (a, b) est appelé “point-selle” ;

(d) Si D = 0 alors le test n’est pas concluant.

En se basant sur ce test,
a) rechercher les extrema ainsi que les points-selles de la fonction

f : (x, y) 7→ f(x, y) = x4 + y4 − 4xy + 1.

Solution. L’origine (0, 0) est un point-selle. De plus, f(1, 1) = −1 et f(−1,−1) = −1 sont des
minima locaux de f .

b) déterminer la distance 7 (c.-à-d. la plus courte distance) entre le point de coor-
données (1, 0,−2) et le plan d’équation cartésienne x+ 2y + z = 4.

Solution. Le point de coordonnée (11/6, 5/3,−7/6) correspond à un minimum local (et même
global car en géométrie, on prouve que la distance d’un point à un plan est unique) de la

6. Cette équation est l’une des équations d’état d’un gaz parfait, obtenue par dérivation partielle de l’entropie d’un tel
gaz (cf. exercice précédent).

7. Suggestion : la distance entre deux points de coordonnées (x1, y1, z1) et (x2, y2, z2) est donnée par

d =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

et, comme d ≥ 0, minimiser d équivaut à minimiser d2.
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distance, qui vaut en ce point 5
√

6/6. La distance du point donné au plan donné vaut donc
5
√

6/6.

4. Si une charge électrique est répartie sur une région R et si la densité de charges (en
unités par unités carrées) est donnée par ρ(x, y) en un point(x, y) de R, alors la charge
totale Q présente sur cette région est donnée par

Q =

∫∫
R

ρ(x, y) dxdy.

Une charge électrique est distribuée sur le domaine triangulaire D de la figure ci-
dessous de manière telle que la densité de charge en (x, y) est donnée par ρ(x, y) = 2xy,
mesurée en coulombs par mètre carrés (C/m2). Calculer la charge totale présente sur
D.

-

6

@
@

@
@
@
@

1 (1, 1)

10 X

Y

Solution. La charge totale présente sur le domaine triangulaire donné est de (5/12) C.

5. En physique, le moment d’inertie d’une masse ponctuelle m par rapport à un axe est
défini par le produit mr2, où r est la distance entre la masse ponctuelle m et l’axe.
Cette notion se généralise au cas d’une plaque de métal, qui occupe une région R du
plan et dont la densité en (x, y) est donnée par ρ(x, y), de la manière suivante.
Le moment d’inertie d’une telle plaque par rapport à l’axe des abscisses (resp. des
ordonnées) vaut

IX =

∫∫
R

x2ρ(x, y) dxdy

(
resp. IY =

∫∫
R

y2ρ(x, y) dxdy

)
.

Il peut également être intéressant de considérer le moment d’inertie par rapport à
l’origine O, celui-ci étant donné par

IO =

∫∫
R

(x2 + y2)ρ(x, y) dxdy.

On remarque évidemment que IO = IX + IY .

Soit un disque homogène D de densité ρ(x, y) = ρ et de diamètre d. Déterminer

a) le moment d’inertie de ce disque par rapport à son centre ;
b) le moment d’inertie de ce disque par rapport à une droite quelconque d′ passant

par son centre.

Solution. a) Considérons le repère orthonormé dont l’origine O est le centre du disque donné,
et dont les axes cöıncident avec deux droites perpendiculaires passant par O. On obtient dès
lors la configuration suivante :
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-

6

&%
'$

d
2

d
2

O X

Y

Dans ces conditions, le disque D est décrit par

D =

{
(x, y) ∈ R2 | x2 + y2 ≤

(
d

2

)2
}

ce qui correspond en coordonnées polaires à l’ensemble

D′ =

{
(r, θ) | r ∈

]
0,
d

2

]
, θ ∈ [0, 2π]

}
,

auquel on ajoute le centre du disque.
Ainsi, le moment d’inertie du disque D par rapport à son centre correspond au moment d’inertie
par rapport à l’origine du repère choisi et est donné par

IO =

∫∫
D

(x2 + y2)ρ(x, y) dxdy =

∫∫
D′
r2ρ r drdθ =

πρd4

25
.

b) Vu le choix du repère, le moment d’inertie du disque D par rapport à une droite passant
par son centre correspond au moment d’inertie par rapport à l’axe X ou encore par rapport à
l’axe Y . On en conclut donc que tous ces moments d’inertie du disque sont égaux, c’est-à-dire
IX = IY = Id′ quelle que soit la droite d′ passant par O. Par conséquent, comme

IO = IX + IY = 2Id′ ,
il s’ensuit que

Id′ =
IO
2

=
πρd4

26
.

6. Dans certains contextes, le calcul de probabilités peut se ramener à du calcul intégral.
En effet, lorsque l’on modélise une quantité X à l’aide d’une fonction de densité
x 7→ fX(x) positive, intégrable sur R et d’intégrale égale à 1, la probabilité que cette
quantité soit supérieure (resp. inférieure) à une valeur a ∈ R (resp. b ∈ R) est donnée
par

P[X > a] =

∫ +∞

a

fX(x) dx

(
resp. P[X < b] =

∫ b

−∞
fX(x) dx

)
.

De plus, si l’on s’intéresse à une autre quantité Y que l’on désire étudier conjointement
avec X, ces deux quantités peuvent être modélisées simultanément à l’aide d’une
fonction de densité jointe (x, y) 7→ f(X,Y )(x, y) positive et intégrable sur R2 et telle que∫ +∞

−∞

(∫ +∞

−∞
f(X,Y )(x, y) dx

)
dy = 1,

auquel cas la probabilité que (X,Y ) ∈ R (R partie de R2) est donnée par

P[(X,Y ) ∈ R] =

∫∫
R

f(X,Y )(x, y) dxdy.

Le patron d’une fabrique de batteries destinées aux appareils électroniques tels que
les GSM, les MP-3, etc... s’intéresse à la longévité de ses produits et décide d’étudier
conjointement le nombre maximal (qu’il note X), ainsi que le nombre minimal (qu’il
note Y ), d’années de fonctionnement de ces derniers. Après bien des calculs, il arrive
à la conclusion que la fonction de densité jointe de X et Y est de la forme
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f(X,Y )(x, y) =

{
C(x+ 2y) si 0 ≤ y ≤ x ≤ 10
0 sinon

.

(a) Déterminer la constante C pour que la fonction f(X,Y ) soit bien une fonction de
densité jointe.

(b) Calculer la probabilité qu’une batterie fonctionne au plus 7 ans mais au moins 2
ans.

Solution. (a) Pour que la fonction donnée soit une fonction de densité, la constante C doit
valoir 3/2000.

(b) La probabilité que la durée de vie d’une batterie de cette fabrique soit au maximum de 7
ans et au minimum de 2 ans est de 19/80 = 0, 2375, c’est-à-dire proche de 24%

7. Deux variables aléatoires X et Y , modélisées respectivement par les fonctions de
densité fX et fY , sont dites indépendantes lorsque leur fonction de densité jointe vaut
le produit de leurs fonctions de densité respectives, c.-à-d.

f(X,Y )(x, y) = fX(x)fY (y).

En outre, un temps d’attente T est modélisé par une fonction de densité de la forme

fT (t) =

{
0 si t < 0
µ−1e−t/µ si t ≥ 0

où µ > 0 est le temps d’attente moyen.

Le directeur d’un cinéma constate que le temps d’attente moyen pour obtenir un
ticket est de 10 minutes, et celui pour obtenir une boisson frâıche de 5 minutes. En
supposant que ces temps d’attente sont indépendants, calculer la probabilité qu’un
spectateur attende au total moins de 20 minutes avant de prendre place en ayant son
ticket et une boisson.

Solution. Si l’on note X (resp. Y ) le temps d’attente pour obtenir un ticket (resp. une boisson
frâıche), il vient que P[X + Y < 20] = 1 + 1/e4− 2/e2 ≈ 0, 7476. Par conséquent, environ 75% des
spectateurs attendent moins de 20 minutes avant de s’asseoir.

Calcul matriciel

1. Le mouvement d’une particule se déplaçant dans le plan est régi par les équations
différentielles suivantes : {

Dx(t) = −4x(t)− 3y(t) + 5t
Dy(t) = −2x(t)− 5y(t) + 5et

.

Déterminer les composantes (x(t), y(t)) du vecteur position de cette particule à tout
instant t.

Solution. Le système donné s’écrit(
Dx(t)
Dy(t)

)
︸ ︷︷ ︸

:=DP (t)

=

(
−4 −3
−2 −5

)
︸ ︷︷ ︸

:=A

(
x(t)
y(t)

)
︸ ︷︷ ︸

:=P (t)

+

(
5t

5 et

)
︸ ︷︷ ︸

:=B(t)

. (∗)

Tentons de diagonaliser la matrice A. On a

det(A− λ 1) = λ2 + 9λ+ 14 = (λ+ 2)(λ+ 7)

et donc les valeurs propres de A sont −2 (simple) et −7 (simple), ce qui entrâıne que A est
diagonalisable. Après recherche, il s’avère que les vecteurs(

−3
2

)
et

(
1
1

)
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sont des vecteurs propres de A associés respectivement à −2 et −7. Ainsi, en posant

S =

(
−3 1
2 1

)
, il vient que S−1AS =

(
−2 0
0 −7

)
.

Dès lors, en posant (
X(t)
Y (t)

)
= S−1

(
x(t)
y(t)

)
,

il vient que (
DX(t)
DY (t)

)
= S−1

(
Dx(t)
Dy(t)

)
,

et, en multipliant à gauche par S−1 les deux membres de l’égalité (∗) ci-dessus, on obtient que

S−1

(
Dx(t)
Dy(t)

)
= S−1A

(
x(t)
y(t)

)
+ S−1

(
5t

5 et

)
⇔

(
DX(t)
DY (t)

)
= S−1AS

(
X(t)
Y (t)

)
+ S−1

(
5t

5 et

)
. (∗∗)

Or, det(S) = −5 et l’inverse de S est donnée par

S−1 =
1

5

(
−1 1
2 3

)
.

Par conséquent, l’équation (∗∗) équivaut à(
DX(t)
DY (t)

)
=

(
−2 0
0 −7

)(
X(t)
Y (t)

)
+

1

5

(
−1 1
2 3

)(
5t

5 et

)
.

ce qui équivaut encore au système{
DX(t) = −2X(t)− t+ et

DY (t) = −7Y (t) + 2t+ 3 et
.

Les équations différentielles sont alors découplées et peuvent être résolues séparément. Les solutions
de ces deux dernières EDLCC sont les fonctions

X(t) = C1e
−2t +

1

3
et − 1

2
t+

1

4
, t ∈ R

et

Y (t) = C2e
−7t +

3

8
et +

2

7
t− 2

49
, t ∈ R

où C1, C2 ∈ C. Enfin, vu ce qui précède, le vecteur position de la particule à l’instant t est donné
par (

x(t)
y(t)

)
= S

(
X(t)
Y (t)

)
=

(
−3 1
2 1

)(
X(t)
Y (t)

)
=

(
−3
2

)
X(t) +

(
1
1

)
Y (t)

ou encore 
x(t) = −3C1 e

−2t + C2 e
−7t − 5

8
et +

25

14
t− 155

196
, t ∈ R

y(t) = 2C1 e
−2t + C2 e

−7t +
25

24
et − 5

7
t+

45

98
, t ∈ R

où C1, C2 ∈ C.

2. Le mouvement d’une particule se déplaçant dans l’espace est régi par les équations
différentielles suivantes :  Dx(t) = x(t) + 2y(t)− z(t)

Dy(t) = 2x(t) + 4y(t)− 2z(t)
Dz(t) = −x(t)− 2y(t) + z(t)

.
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Déterminer les composantes (x(t), y(t), z(t)) du vecteur position de cette particule à
tout instant t.

Solution. Le système donné se réécrit Dx(t)
Dy(t)
Dz(t)


︸ ︷︷ ︸

:=DP (t)

=

 1 2 −1
2 4 −2
−1 −2 1


︸ ︷︷ ︸

:=A

 x(t)
y(t)
z(t)


︸ ︷︷ ︸

=P (t)

. (∗)

Les valeurs propres de la matrice A sont 0 (valeur propre double) et 6 (valeur propre simple).
Après recherche, il s’avère que les vecteurs 1

0
1

 et

 2
−1
0


sont des vecteurs propres de A, linéairement indépendants, associés à 0, ce qui entrâıne que
la matrice A est diagonalisable puisqu’elle possède au moins 3 vecteurs propres linéairement
indépendants. De plus, le vecteur  1

2
−1


est un vecteur propre associé à la valeur propre 6.
Ainsi, en posant

S =

 1 2 1
0 −1 2
1 0 −1

, il vient que S−1AS =

 0 0 0
0 0 0
0 0 6

.

Dès lors, en posant  X(t)
Y (t)
Z(t)

 = S−1

 x(t)
y(t)
z(t)


et en multipliant à gauche par S−1 les deux membres de l’égalité (∗), on obtient le système DX(t) = 0

DY (t) = 0
DZ(t) = 6Z(t)

⇔

 X(t) = C1

Y (t) = C2

Z(t) = C3 e
6t

,

où C1, C2, C3 ∈ C. Dès lors, vu ce qui précède, le vecteur position de la particule à l’instant t est
donné par x(t)

y(t)
z(t)

 = S

 X(t)
Y (t)
Z(t)

 =

 1 2 1
0 −1 2
1 0 −1

 C1

C2

C3e
6t


= C1

 1
0
1

+ C2

 2
−1
0

+ C3

 1
2
−1

 e6t, où C1, C2, C3 ∈ C

ou encore  x(t) = C1 + 2C2 + C3 e
6t

y(t) = −C2 + 2C3 e
6t

z(t) = C1 − C3 e
6t

.
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3. Un individu vit dans un milieu où il est susceptible d’attrapper une maladie par
piqûre d’insecte. Il peut être dans l’un des trois états suivants : immunisé (I), malade
(M), non malade et non immunisé (S). D’un mois à l’autre, son état peut changer
selon les règles suivantes :

- étant immunisé, il peut le rester avec une probabilité 0, 9 ou passer à l’état S avec
une probabilité 0, 1 ;

- étant dans l’état S, il peut le rester avec une probabilité 0, 5 ou passer à l’état M
avec une probabilité 0, 1 ;

- étant malade, il peut le rester avec une probabilité 0, 2 ou passer à l’état S avec
une probabilité 0, 8.

Déterminer

a) la matrice de transition du système ;

Solution. Notons respectivement I0,M0 et S0 les probabilités qu’un individu soit immunisé,
malade, non malade et non immunisé un jour donné. Le mois suivant, ces probabilités sont
respectivement données par I1 = 0, 9 I0 + 0, 4S0 + 0M0

S1 = 0, 1 I0 + 0, 5S0 + 0, 8M0

M1 = 0 I0 + 0, 1S0 + 0, 2M0

⇔

 I1
S1

M1

 =

 0, 9 0, 4 0
0, 1 0, 5 0, 8
0 0, 1 0, 2


︸ ︷︷ ︸

:=T

 I0
S0

M0

.

Donc, la matrice de transition du système est donnée par la matrice T .

b) la probabilité qu’un individu immunisé soit encore immunisé après deux mois ;

Solution. Si un individu est immunisé un jour donné, la probabilité qu’il soit immunisé deux
mois plus tard est de 85%.

c) la probabilité qu’à long terme, un individu soit immunisé.

Solution. A long terme, la probabilité qu’un individu soit immunisé est donnée par 32/41,
c’est-à-dire environ 78%.

4. Un biologiste étudie le passage d’une molécule de phosphore dans un écosystème.
Celle-ci peut se trouver dans le sol, dans l’herbe, dans le bétail ou peut disparâıtre de
l’écosystème. D’une heure à l’autre, le transfert peut s’effectuer selon les modalités
suivantes :

- étant dans le sol, la molécule a 3 chances sur 5 d’y rester, 3 chances sur 10 de passer
dans l’herbe et 1 chance sur 10 de disparâıtre ;

- étant dans l’herbe, elle a 1 chance sur 10 de revenir dans le sol, 2 chances sur 5 de
rester dans l’herbe et 1 chance sur 2 de se retrouver dans le bétail ;

- étant dans le bétail, elle a 3 chances sur 4 de retourner dans le sol, 1 chance sur 5
de rester dans le bétail et 1 chance sur 20 de disparâıtre ;

- si la molécule disparâıt, elle ne réapparâıt plus nulle part.

Déterminer la matrice de transition du système.

Solution. Notons respectivement S0, H0, B0 et D0 les probabilités qu’une molécule de phosphore se
trouve dans le sol, dans l’herbe, dans le bétail et disparaisse à une heure donnée. L’heure suivante,
ces probabilités sont respectivement données par
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S1 = 3S0/5 +H0/10 + 3B0/4 + 0D0

H1 = 3S0/10 + 2H0/5 + 0B0 + 0D0

B1 = 0S0 +H0/2 +B0/5 + 0D0

D1 = S0/10 + 0H0 +B0/20 + 1D0

⇔


S1

H1

B1

D1

 =


3/5 1/10 3/4 0

3/10 2/5 0 0

0 1/2 1/5 0

1/10 0 1/20 1


︸ ︷︷ ︸

:=T


S0

H0

B0

D0

.

Donc, la matrice de transition du système est donnée par la matrice T .

5. La cryptographie, pour beaucoup de monde, est un moyen de maintenir des commu-
nications privées. En effet, la protection des communications sensibles a été l’objectif
principal de la cryptographie dans la grande partie de son histoire. Le chiffrage est la
transformation des données dans une forme illisible. Son but est d’assurer la sécurité
en maintenant l’information cachée aux gens à qui l’information n’est pas adressée,
même ceux qui peuvent voir les données chiffrées. Le déchiffrage est l’inverse du chif-
frage ; c’est la transformation des données chiffrées dans une forme intelligible.
Aujourd’hui, les gouvernements emploient des méthodes sophistiquées de codage et de
décodage des messages. Un type de code, qui est extrêmement difficile à déchiffrer,
se sert d’une grande matrice pour coder un message. Le récepteur du message le
décode en employant l’inverse de la matrice. Voici un exemple de codage/décodage
d’un message par ce procédé.
Considérons le message

SUIS EN DANGER

ainsi que la matrice de codage (
1 −2
−1 3

)
= C.

Pour le codage, on assigne à chaque lettre de l’alphabet un nombre, à savoir simple-
ment sa position dans l’alphabet, c’est-à-dire A correspond à 1, B correspond à 2, . . .
, Z correspond à 26. En outre, on assigne le nombre 27 à un espace. Ainsi, le message
devient :

S U I S * E N * D A N G E R
19 21 9 19 27 5 14 27 4 1 14 7 5 18.

Puisqu’on emploie une matrice 2×2, on décompose la forme numérique de ce message
en une suite de vecteurs 8 1× 2 :

(19 21), (9 19), (27 5), (14 27), (4 1), (14 7), (5 18).

On code alors le message en multipliant chacun de ces vecteurs par la matrice de
codage C, ce qui peut être fait en définissant une matrice dont les lignes sont ces
vecteurs et en multipliant cette dernière par C, ce qui nous donne :

19 21
9 19
27 5
14 27
4 1
14 7
5 18


(

1 −2
−1 3

)
=



−2 25
−10 39
22 −39
−13 53

3 −5
7 −7
−13 44


Dès lors, le message crypté est donné par les lignes de cette dernière matrice que l’on
place bout à bout pour la transmission :

−2, 25, −10, 39, 22, −39, −13, 53, 3, −5, 7, −7, −13, 44.

8. Dans le cas où il faut compléter le dernier vecteur, il suffit d’y placer des “27”, ce qui revient à compléter le message
par des espaces pour avoir un nombre de caractères qui soit multiple de la dimension de la matrice de codage.
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Enfin, pour décoder le message, le récepteur a recours à la même technique que celle
employée pour le codage mais en utilisant l’inverse de la matrice de codage, qui est
donnée ici par

C−1 =

(
3 2
1 1

)
Il doit donc calculer le produit

−2 25
−10 39
22 −39
−13 53

3 −5
7 −7
−13 44


(

3 2
1 1

)
=



19 21
9 19
27 5
14 27
4 1
14 7
5 18


et il retrouve bien la matrice correspondant au message de départ, ce qui lui permet
de lire le message :

19 21 9 19 27 5 14 27 4 1 14 7 5 18
S U I S * E N * D A N G E R.

Le Gouvernement a réussi à intercepter le message crypté suivant, provenant de l’en-
nemi public n◦1 et destiné à l’ennemi public n◦2 :

−18, −21, −31, 53, 48, 61, 3, −15, −21, −34, −30, −43, 45, 42, 48.

L’un de ses meilleurs espions infiltrés, James Bond, a découvert que la matrice utilisée
par l’ennemi pour coder ce message est la suivante : −3 −3 −4

0 1 1
4 3 4

 .

Malheureusement, il n’y connâıt rien en calcul matriciel et personne ne peut déchiffrer
ce message... Votre mission est de décoder ce message dans les plus brefs délais.

Solution. La matrice de décodage est donnée par l’inverse de la matrice de codage, c’est-à-dire la
matrice  1 0 1

4 4 3
−4 −3 −3

 .

Le message est le suivant :

22 9 12 1 9 14 27 3 21 18 9 5 21 24 27
V I L A I N * C U R I E U X *.

Approximations polynomiales

La vitesse v d’une vague est liée à sa longueur d’onde λ et à la profondeur h de l’eau
(exprimées en mètres) par l’expression

v2 =
gλ

2π
th

(
2πh

λ

)
,

où g est l’accélération due à la pesanteur.



118 CHAPITRE 5. CORRECTION DES EXERCICES 2025-2026 (MATH1009)

— Sachant que th : x 7→ (ex − e−x)/(ex + e−x), déterminer l’approximation polynomiale à
l’ordre 1 en 0 de cette fonction.

— Grâce à cette approximation, en sachant que la vague qui a ravagé le Japon en 2011
avait une longueur d’onde de 5 km, à combien peut-on estimer la vitesse du tsunami
lors de son arrivée près des côtes (on suppose alors que la profondeur de l’eau est de
2 m) ?

Solution. - La fonction th : x 7→ (ex − e−x)/(ex + e−x) est indéfiniment dérivable sur R et sa dérivée
première est

D th(x) =
4

(ex + e−x)2
.

Comme th(0) = 0 et D th(0) = 1, l’approximation polynomiale à l’ordre 1 en 0 de cette fonction est le
polynôme P (x) = x, x ∈ R.

- Si λ = 5 km = 5000 m et h = 2 m, alors la valeur de 2πh/λ est proche de 0 et, en utilisant l’ap-
proximation polynomiale ci-dessus, on a

v2 ≈ gλ

2π
× 2πh

λ
= gh.

Ainsi, la vitesse de la vague du tsunami lors de son arrivée près des côtes était
√

2 . 9, 81 = 4, 429 m/s.
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Liste 15 : Révisions en vue de l’examen

I. Description d’ensemble

Décrire analytiquement l’ensemble borné fermé hachuré suivant (les courbes représentées
sont une droite et une parabole) en commençant par l’ensemble de variation des ordonnées
puis, à ordonnée fixée, l’ensemble de variation des abscisses.
Faire de même en commençant par l’ensemble de variation des abscisses.

0 1 2 3 4 5 6−1−2−3

0

1

2

3

−1

−2

−3

−4

X

Y

Si on commence par l’ensemble de variation des ordonnées, on a

{(x, y) ∈ R2 : y ∈ ]−∞,−2], x ∈ [2− y, y2]} ∪ {(x, y) ∈ R2 : y ∈ [−2, 1], x ∈ [y2, 2− y]}.

Si on commence par l’ensemble de variation des abscisses, on a

{(x, y) ∈ R2 : x ∈ [0, 1], y ∈ [−
√
x,
√
x]} ∪ {(x, y) ∈ R2 : x ∈ [1, 4], y ∈ [−

√
x, 2− x]}

∪{(x, y) ∈ R2 : x ∈ [4,+∞[, y ∈ [2− x,−
√
x]}.

II. Fonctions de plusieurs variables

1. On donne la fonction f : (x, y) 7→ ln

(√
x+ y

x− y

)
.

a) Déterminer son domaine de définition, de dérivabilité et les représenter dans un
repère orthonormé.

Solution. Les 2 domaines sont égaux à

{
(x, y) ∈ R2 : x 6= y,

x+ y

x− y
> 0

}

-
X1

6
Y

1

y = xy = −x

Les points des droites sont exclus de l’ensemble.

b) Déterminer les dérivées partielles de cette fonction et, si possible, les évaluer au
point de coordonnées (−2, 1).
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Solution. Les dérivées partielles de la fonction sont données par

Dxf(x, y) =
−y

x2 − y2
Dyf(x, y) =

x

x2 − y2

et, comme le point de coordonnées (−2, 1) appartient au domaine de dérivabilité, on aDxf(−2, 1) =
−1
3 et Dyf(−2, 1) = −2

3 .

2. Soit f une fonction continûment dérivable sur ]−2, 1[×]−4, 4[. On demande le domaine
de dérivabilité de la fonction F définie par F (x, y) = f(x+y2, x2 +4y2), sa représentation
graphique ainsi que l’expression des dérivées partielles de F en fonction de celles de f .

Solution. Le domaine de dérivabilité de F est l’ensemble

{(x, y) ∈ R2 : −2 < x+ y2 < 1, −4 < x2 + 4y2 < 4}.

Il est représenté par l’ensemble des points hachurés ci-dessous, les points des courbres étant exclus
de l’ensemble.

-6 -4 -2 2

-2

-1

1

2

-
X

6
Y

y2 = −x− 2

y2 = 1− x

x2 + 4y2 = 4

Les dérivées partielles de F sont données par

(DxF )(x, y) = (D1f)(x+ y2, x2 + 4y2) . 1 + (D2f)(x+ y2, x2 + 4y2) . 2x

(DyF )(x, y) = (D1f)(x+ y2, x2 + 4y2) . 2y + (D2f)(x+ y2, x2 + 4y2) . 8y.

3. Si elles existent, calculer les intégrales suivantes

a) I =

∫ 4

0

(∫ 2

√
x

x sin(y5) dy

)
dx

Solution. On a I =
1

10
(1− cos(32))

b) I =

∫∫
A

e−y
2

dx dy si A est l’ensemble fermé borné hachuré ci-dessous

-
X1

6
Y

1

− 1
2

Solution. On a I =
3

2
− 1

2e
− 1

4
√
e

.
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c) I =

∫∫
A

1√
(1 + x2 + y2)5

dx dy si A = [0,+∞[×[0,+∞[

Solution. On a I =
π

6

d) I =

∫ +∞

0

(∫ 2

0

e−(y+1)x

4 + y2
dy

)
dx

Solution. On a I =
1

5

(
ln(3)− 1

2
ln(2) +

π

8

)
.

III. Calcul matriciel

1. Calculer (si elle existe) la matrice inverse de la matrice suivante puis montrer que la
matrice trouvée est bien l’inverse de la matrice donnée si

A =

 −2 2 3
1 −1 0
0 1 4

 .

Solution. Comme detA = 3 6= 0, la matrice inverse de A existe et on a

A−1 =
1

3

 −4 −5 3
−4 −8 3
1 2 0

 .

De plus, AA−1 = A−1A = 1 si 1 est la matrice identité de dimension 3.

2. Rechercher les valeurs propres et les vecteurs propres de la matrice suivante. Cette
matrice est-elle diagonalisable ? Pourquoi ? Si elle l’est, en déterminer une forme
diagonale, ainsi qu’une matrice inversible qui y conduit puis prouver que les matrices
données sont correctes.

A =

 3 −2 −2
−2 3 −2
−2 −2 3

 .

Solution. Les valeurs propres de A sont −1 (simple) et 5 (double).
Les vecteurs propres relatifs à la valeur propre double 5 sont les vecteurs

c

 −1
1
0

+ c′

 −1
0
1


où c et c′ sont des complexes non simultanément nuls. Dès lors, la matrice A est diagonalisable
puisqu’elle possède 3 vecteurs propres linéairement indépendants.
Les vecteurs propres relatifs à la valeur propre simple −1 sont les vecteurs

c

 1
1
1

 où c ∈ C0.

Ainsi, on a, par exemple,

S =

 −1 −1 1
1 0 1
0 1 1

 tel que ∆ = S−1AS =

 5 0 0
0 5 0
0 0 −1

 .
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Les matrices données sont correctes puisque

AS = S∆ =

 −5 −5 −1
5 0 −1
0 5 −1

 .

3. Pour inciter les jeunes à faire du sport, une association oblige ses affiliés à pratiquer,
chaque semaine, un sport sur les trois qu’elle propose (jogging, natation, basket).
D’une semaine à l’autre, les étudiants peuvent changer de choix.
- Ayant choisi le jogging, un étudiant a une chance sur deux d’aller à la piscine et
une chance sur deux de pratiquer le basket la semaine suivante.
- S’il a nagé une semaine, la semaine suivante, il a une chance sur trois de poursuivre
la même activité, une chance sur trois de faire du jogging et une chance sur trois de
pratiquer le basket.
- Enfin, s’il a joué au basket, il a une chance sur quatre de nager et trois chances sur
quatre de faire du jogging.
(i) Déterminer la matrice de transition.

Solution. Soient B0, J0 et N0 respectivement le type de sport (basket, jogging, natation) choisi
pour une semaine fixée au départ et B1, J1 et N1 respectivement le type de sport choisi la semaine
suivante. On a donc  B1

J1

N1

 =

 0 1/2 1/3
3/4 0 1/3
1/4 1/2 1/3

 B0

J0

N0


et la matrice de tansition T est

T =

 0 1/2 1/3
3/4 0 1/3
1/4 1/2 1/3

 .

(ii) Sachant que cette matrice est régulière, calculer la probabilité qu’à long terme
un étudiant fasse du jogging.

Solution. Puisque T est une matrice régulière, la situation à long terme est donnée par le vecteur
propre de probabilité de valeur propre 1. Ce vecteur est 12/41

14/41

15/41


et la probabilité qu’un étudiant fasse du jogging à long terme est de 14/41.

IV. Approximations polynomiales

Déterminer l’approximation polynomiale à l’ordre n = 0, 1, 2 et 3 en x0 = 0 pour la fonction

f : x 7→ sh(x) =
ex − e−x

2
.

Représenter f et ses approximations.

Solution. Si on note Pn(x) l’approximation à l’ordre n en 0, puisque f est infiniment dérivable sur R,
on a

P0(x) = 0, P1(x) = P2(x) = x et P3(x) = x+
x3

6
, x ∈ R.
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-4 -2 2 4

-4

-2

2

4

-
X

6
Y

y = sh(x)
H
HHj

P3
���

P0

P1 = P2

V. Développement en série de puissances

Déterminer le développement en série de puissances de x la fonction f : x 7→ 1/(1 + x2).

Le développement en série de puissances de f est donné par

+∞∑
m=0

(−1)mx2m, x ∈]− 1, 1[.
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